Combined Heat and Power Systems in the Midwest: Examining Current Efforts and Opportunities for Growth



MEEA and Energy Resources Center

December 12, 2023

## Housekeeping

- This webinar is being recorded, and MEEA will be sending a link to view it
- If you have any questions for the presenters, please put them in the Question box, not the chat, to make sure we see them
- Feel free to provide input using the chat functionality



## Midwest Energy Efficiency Alliance

The Midwest Energy Efficiency Alliance (MEEA) is a collaborative network, promoting energy efficiency to optimize energy generation, reduce consumption, create jobs and decrease carbon emissions in all Midwest communities.

MEEA is a non-profit membership organization with 150+ members, including:





Energy service companies & contractors

State & local governments



#### Academic & Research institutions

Electric & gas utilities







Assessment of Combined Heat and Power (CHP) Systems in the Midwest's Top Manufacturing Industries



Originally presented at the 2023 ACEEE Summer Study on Energy Efficiency in Industry (July 2023)

December 12, 2023

## Authors



## **Joe Ricchiuto** Technical Manager



## Greg Ehrendreich Sr. Analyst



## Background

- CHP systems offer numerous advantages, but their utilization in some Midwest states is low due to policy barriers and high upfront costs.
- Our analysis aimed to identify gaps in the distribution of CHP systems across major electric use industries in Illinois, Indiana, Kentucky, Michigan, Missouri and Ohio.
- We assessed the current deployment of CHP systems in specific industrial subsectors and identified subsectors that can more effectively utilize CHP based on economic indicators.
- Based on the current deployment of CHP, we extrapolated the region's potential generation, capacity and GHG savings.



## Data Sources There is no 'one stop shop' for data

#### EIA Manufacturing Energy Consumption Survey (MECS)

#### Census Bureau American Survey of Manufacturers (ASM)

#### DOE CHP & Microgrid Database



## Midwest States Studied

#### A Cross-section of MEEA's states

| State    | Total Industrial<br>Consumption (Trillion Btu) | Nat'l Rank<br>(of 51) | MW Rank<br>(of 13) |
|----------|------------------------------------------------|-----------------------|--------------------|
| Indiana  | 1,187                                          | 5                     | 1                  |
| Illinois | 1,131                                          | 6                     | 2                  |
| Ohio     | 1,107                                          | 7                     | 3                  |
| Michigan | 620                                            | 12                    | 5                  |
| Kentucky | 565                                            | 14                    | 7                  |
| Missouri | 305                                            | 31                    | 12                 |



## NAICS Levels

#### Identifying Relevant Industries

- 2 digit
  - 31-34 Manufacturing
- 3 digit
  - Broad subsectors
- 4-6 digits
  - More precise segmentation

| Top 10 Energy Use Subsectors in Midwest |                                 |                                     |  |
|-----------------------------------------|---------------------------------|-------------------------------------|--|
| NAICS Code                              | Manufacturing<br>Subsector      | Total consumption<br>(trillion Btu) |  |
| 331                                     | Primary Metals                  | 922                                 |  |
| 325                                     | Chemicals                       | 804                                 |  |
| 324                                     | Petroleum and Coal<br>Products  | 518                                 |  |
| 311                                     | Food                            | 485                                 |  |
| 322                                     | Paper                           | 274                                 |  |
| 327                                     | Nonmetallic Mineral<br>Products | 237                                 |  |
| 336                                     | Transportation<br>Equipment     | 182                                 |  |
| 332                                     | Fabricated Metal<br>Products    | 124                                 |  |
| 326                                     | Plastics and Rubber<br>Products | 110                                 |  |
| 333                                     | Machinery                       | 73                                  |  |



## State Results & Averages



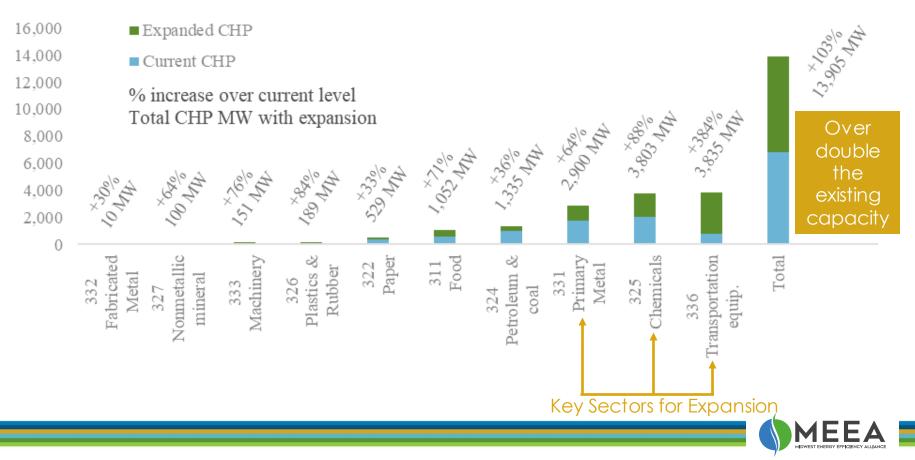



### MW of <u>CHP Capacity</u> per \$1B <u>Sales</u> by Subsector

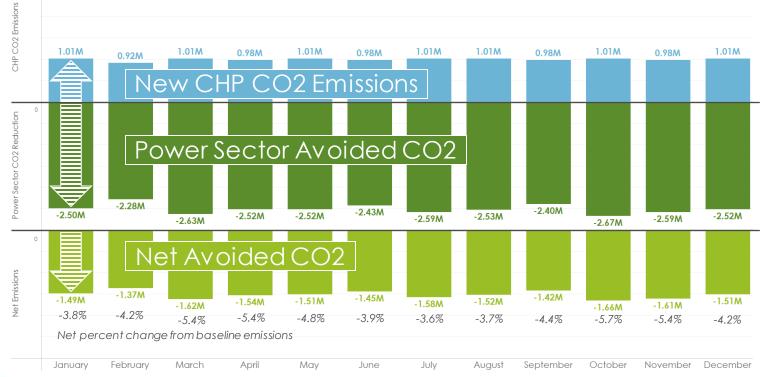
| NAICS<br>code | Meaning of NAICS Code                         | IL   | IN    | KY   | MI     | мо   | ОН    |
|---------------|-----------------------------------------------|------|-------|------|--------|------|-------|
| 311           | Food manufacturing                            | 9.50 | 3.31  | 0.07 | 1.46   | 0.00 | 0.02  |
| 322           | Paper manufacturing                           | 0.95 | 0.00  | 0.00 | 47.68  | 0.00 | 14.20 |
| 324           | Petroleum and coal products<br>manufacturing  | 6.71 | 36.97 | 0.00 | 0.00   | 0.00 | 4.81  |
| 325           | Chemical manufacturing                        | 0.75 | 0.53  | 2.29 | 100.70 | 1.72 | 2.26  |
| 326           | Plastics and rubber products<br>manufacturing | 0.00 | 7.06  | 0.76 | 0.00   | 0.00 | 0.52  |
| 327           | Nonmetallic mineral product<br>manufacturing  | 2.82 | 0.00  | 0.00 | 7.68   | 0.00 | 0.00  |
| 331           | Primary metal manufacturing                   | 5.60 | 42.91 | 0.00 | 0.10   | 0.00 | 4.93  |
| 332           | Fabricated metal product<br>manufacturing     | 0.06 | 0.00  | 0.00 | 0.09   | 0.00 | 0.14  |
| 333           | Machinery manufacturing                       | 3.30 | 0.26  | 0.00 | 0.00   | 0.00 | 0.03  |
| 336           | Transportation equipment<br>manufacturing     | 0.00 | 0.29  | 0.00 | 7.05   | 0.00 | 0.00  |



### Projections: Using Below-Average Deployment Number of manufacturing subsectors per state with belowaverage deployed CHP capacity for that subsector




Without trying to prescribe specific policy changes for each state, we assume in our expanded CHP scenario:


- 1. For each industry with CHP levels below the regional average in a given state, new CHP installations can close the gap
- 2. Policy drivers have been enhanced and barriers reduced



## Projections



## Potential GHG Savings Under Expanded CHP Scenario Grid CO2 Emissions Reduction Across Midwest AVERT Region (tons)





# Policy Implications for CHP Adoption in the Midwest Interconnection

- Interconnection Standards govern how CHP and other DERs can connect to the grid
- According to a DOE analysis, Illinois, Indiana, Michigan and Ohio encourage CHP through their interconnection standards, while Kentucky and Missouri do not.

Interconnection standards that effectively promote CHP deployment generally:

- •Address larger systems
- Apply to both fossil and renewable fuels
- •Include capacity tiers
- Include net metering policies
- •Offer standardized application forms / contracts



## Policy Implications for CHP Adoption in the Midwest Net metering in Studied Midwest States

| State | Net Metering Allowed for CHP?                                                      | Fuel / Size Restrictions                      |  |  |
|-------|------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| IL    | Yes                                                                                | Renewable Fuel / Max 5 MW                     |  |  |
| IN    | No – But has feed-in tariff (FIT)                                                  | Renewable Fuel / 3 kW -1 MW                   |  |  |
| KY    | Yes                                                                                | Renewable Fuel / 30 kW                        |  |  |
| MI    | <b>Yes</b> , for existing customers (Replaced with Distributed Generation Program) | Renewable Fuel / Customer restrictions by siz |  |  |
| МО    | Yes                                                                                | Renewable Fuel / Max 100 kW                   |  |  |
| ОН    | Yes                                                                                | Renewable Fuel / 2 MW for Microturbines       |  |  |



## Policy Implications for CHP Adoption in the Midwest Portfolio Standards

• Renewable Portfolio Standards (RPS) are policies implemented by states to promote the use of renewable sources of energy.

In Illinois, Michigan, Missouri and Ohio, CHP with renewable fuel can count toward RPS compliance In **Indiana**, 30% of the voluntary renewable goal can be met with CHP that uses renewable fuel

**Kentucky** has not implemented an RPS or a voluntary goal



## **Economic Implications - Spark Spread**

Difference between average annual electricity and natural gas prices (\$/MMBTU) in states included in this study





## Utility Implications for CHP Adoption in the Midwest Rate Structures

- Utilities often implement burdensome rate structures for CHP customers.
  - These include disproportionate standby rates and harsh penalties for any system outages.
  - Tariffs that are poorly designed often feature reservation fees
    and demand charges that are fixed and billed based on
    contracted standby capacity, rather than actual usage.



## Available Incentives and Funding

#### Federal – Investment Tax Credit

- Under the IRA, the Sec. 48 ITC is available for qualifying CHP systems.
- New CHP systems meeting the criteria can receive a tax credit of up to 50%.

#### To be eligible for the ITC, CHP projects must meet the following:

- Commence construction before January 1, 2025.
- Have a maximum capacity of 50 MW or less.
- Have an efficiency of 60% or more.



## Available Incentives and Funding

#### State-level tax incentives

 Industrial users can secure state-level funding or tax credits to incentivize CHP implementation.

**Ohio** offers a tax exemption on certain CHP projects

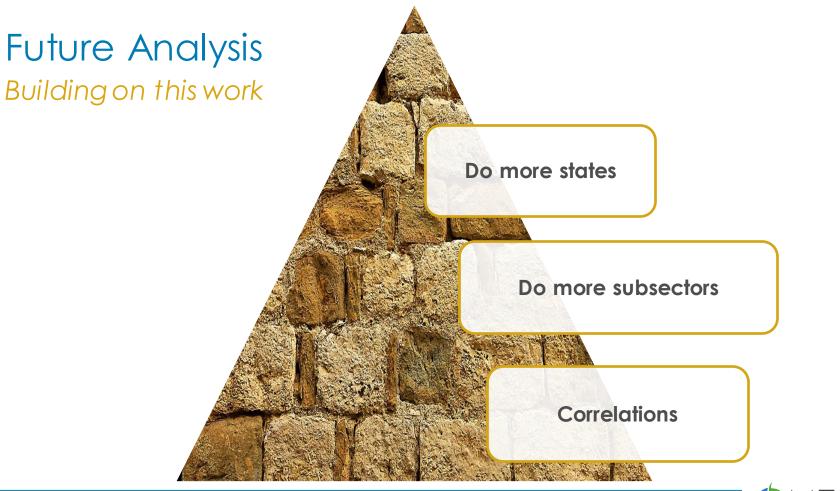
Kentucky provides tax credits for CHP systems using renewable fuel sources

**Kentucky** also offers tax incentives for businesses investing in the renovation of industrial sites, which can include CHP system installation or rehabilitation



## Available Incentives and Funding

**State-level** Funding: Property Assessed Clean Energy (**PACE**)


- PACE enables industrial customers to finance energy efficiency projects, including CHP, without a significant upfront investment.
- Illinois, Kentucky, Michigan, Missouri and Ohio have existing legislation supporting PACE.
- Indiana previously provided funding for industrial CHP projects, but currently only limited state-level tax incentives or funding is available.



## Available Incentives and Funding Utility Incentives

- Utility-level incentives can also make CHP projects more appealing
- In several Midwest states, utilities offer custom incentive programs that can include compensation for CHP



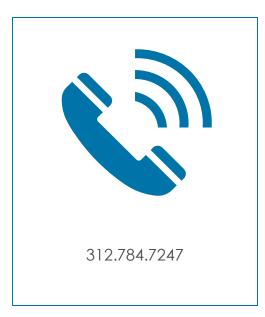




## Main Takeaways

Overall, CHP capacity would **more than double** under our expansion scenario, with certain subsectors ripe for expansion. Under the expansion scenario CHP could save the Midwest 18 million tons of CO2 annually, a 4.4% reduction of grid-based CO2 emissions for the region. Policy implications must be considered when undertaking a CHP project as they have the potential to impede or encourage CHP installations.

There are numerous opportunities available to leverage utility, state, and federal incentives and funding to enhance the economic feasibility of their projects.




## Questions?





jricchiuto@mwalliance.org





#### Technical Resources Offered Through the DOE Combined Heat and Power Technical Assistance Partnership

Midwest Energy Efficiency Alliance

#### December 12 2023

Graeme Miller Assistant Director US DOE Midwest CHP Technical Assistance Partnership



**CHP** Technical Assistance Partnerships

27

# U.S. DOE CHP Technical Assistance Partnerships (CHP TAPs)

#### End User Engagement

Partner with strategic End Users to advance technical solutions using CHP as a cost effective and resilient way to ensure American competitiveness, utilize local fuels and enhance energy security. CHP TAPs offer fact-based, non-biased engineering support to manufacturing, commercial, institutional and federal facilities and campuses.

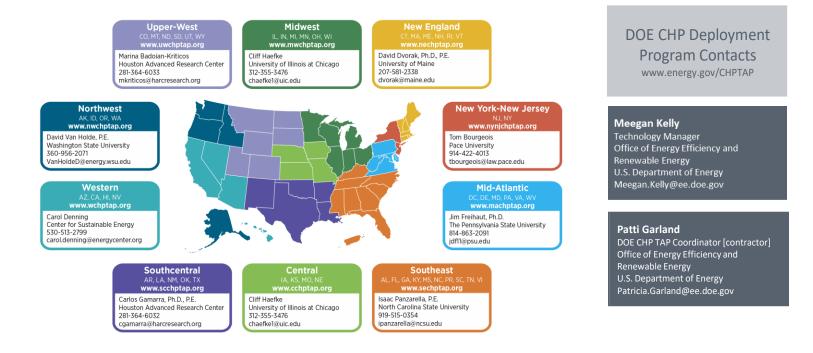
#### Stakeholder Engagement

Engage with strategic Stakeholders, including regulators, utilities, and policy makers, to identify and reduce the barriers to using CHP to advance regional efficiency, promote energy independence and enhance the nation's resilient grid. CHP TAPs provide fact-based, non-biased education to advance sound CHP programs and policies.

#### Technical Services

As leading experts in CHP (as well as microgrids, heat to power, and district energy) the CHP TAPs work with sites to screen for CHP opportunities as well as provide advanced services to maximize the economic impact and reduce the risk of CHP from initial CHP screening to installation.




www.energy.gov/chp



National Manufacturing Day 2019 at the University of Illinois at Chicago

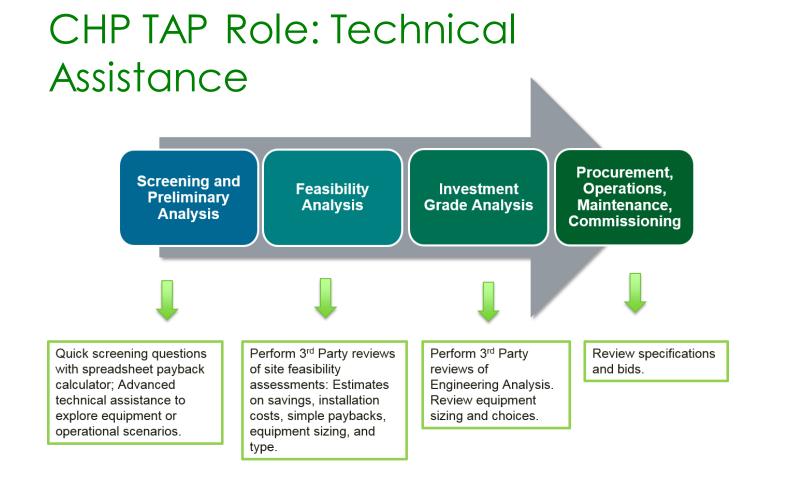


## DOE CHP Technical Assistance Partnerships (CHP TAPs)





## DOE CHP TAP Technical Assistance Services and Resources




# **Ideal Conditions for a CHP System**

- 1) Necessary conditions
  - ✓ High electric usage
  - ✓ Coincidental thermal load
  - ✓ High hours of operation
- 2) Equipment replacement
  - ✓Older back-up generator
  - ✓ Replacing chillers
  - ✓ Replacing boilers

- 3) Customer motivation
  - ✓ Utility cost
  - ✓ Power reliability
  - ✓ Waste heat or biofuel untapped resource
  - ✓ Sustainability & environmental
  - ✓ Plans to expand facility
- 4) Other factors
  - $\checkmark$  EE measures already implemented
  - ✓ Centralized HVAC

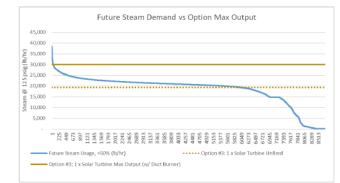


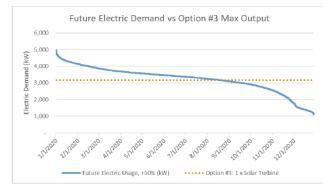


## **DOE TAP CHP Screening Analy**

- High level assessment to determine if site shows potential for CHP
- Quantitative Analysis
  - Energy Consumption & Costs
  - Estimated Energy Savings & Payback
  - CHP System Sizing
  - Qualitative Analysis
    - Understanding project drivers
    - Understanding site peculiarities

| Annual Energy Consumption                 |              |                |
|-------------------------------------------|--------------|----------------|
|                                           | Base Case    | CHP Case       |
| Purchased Electricty, kWh                 | 88,250,160   | 5,534,150      |
| Generated Electricity, kWh                | 0            | 82,716,010     |
| On-site Thermal. MMBtu                    | 426,000      | 18,872         |
| CHP Thermal, MMBtu                        | 0            | 407,128        |
| Boiler Fuel, MMBtu                        | 532,500      | 23,590         |
| CHP Fuel, MMBtu                           | 0            | 969,845        |
| Total Fuel, MMBtu                         | 532,500      | 993,435        |
| Annual Operating Costs                    |              |                |
|                                           | <u> </u>     | <u> </u>       |
| Purchased Electricity, \$                 | \$7,060,013  | \$1,104,460    |
| Standby Power, \$                         | \$0          | \$0            |
| On-site Thermal Fuel, \$                  | \$3,195,000  | \$141,539      |
| CHP Fuel, \$                              | \$0          | \$5,819,071    |
| Incremental O&M, \$                       | <u>\$0</u>   | \$744,444      |
| Total Operating Costs, \$                 | \$10,255,013 | \$7,809,514    |
| Simple Payback                            |              |                |
| Annual Operating Savings, \$              |              | \$2,445,499    |
| Total Installed Costs, \$/kW              |              | \$1,400        |
| Total Installed Costs, \$/k               |              | \$12,990,000   |
| Simple Payback, Years                     |              | 5.3            |
| Operating Costs to Generate               |              |                |
| Fuel Costs, \$/kWh                        |              | \$0.070        |
| Thermal Credit, \$/kWh                    |              | (\$0.037)      |
| Incremental O&M, \$/kWh                   |              | <u>\$0.009</u> |
| Total Operating Costs to Generate, \$/kWh |              | \$0.042        |





# **Advanced Technical Assistance Examples**

- 15-Min Performance Model
- Financial Pro-Forma (NPV, ROI, etc.)
- GHG Analysis
- Utility Rate Analysis (Standby Rates)
- Thermal use determination (what to do with the heat)
- Installation cost estimation (Equipment Budgetary Pricing)
- Biogas Analysis (Cleanup Equipment Required)
- RFP/RFQ Assistance
- 3rd Party Review
- Other, as-needed analysis



## **Advanced Technical Assistance Examples**





| COST CATEGORIES:                                  |                |     |            |
|---------------------------------------------------|----------------|-----|------------|
| Equipment Costs:                                  | Source         |     |            |
| Centaur 40 SoLoNOx Turbine                        |                |     |            |
| Generator Set                                     | Solar Turbines | S   | 2,900,000  |
| Heat Recovery Steam Generator<br>with ductburners | Solar Turbines | \$  | 1,828,700  |
| Electrical Equipment                              | Solar Turbines | s   | 904,500    |
| Fuel Gas Compressor                               | Solar Turbines | S   | 654,500    |
| Deaerator                                         | Solar Turbines | N/A |            |
| Building Work                                     | EPA Estimate   | \$  | 438,500    |
| Total Equipment                                   | Cost:          | \$  | 6,726,200  |
| Construction Costs                                | EPA Estimate   | \$  | 2,204,000  |
| Total Installed Costs                             |                |     | 8,930,200  |
| Other Costs:                                      |                |     |            |
| Commissioning Parts and Site Te                   | Solar Turbines | \$  | 205,200    |
| Project Management                                | Solar Turbines | s   | 250,000    |
| Shipping                                          | Solar Turbines | \$  | 143,800    |
| Balance of Plant Contingency                      | Solar Turbines | \$  | 247,900    |
| Development Fees                                  | EPA Estimate   | \$  | 652,800    |
| TOTAL PROJECT COSTS                               |                | \$  | 10,429,900 |

| 1xSolar Centaur 40 Turbine                         |                 |  |
|----------------------------------------------------|-----------------|--|
| Financial Pro-Forma                                |                 |  |
| Financial Results:                                 |                 |  |
| Equity Contribution: 100%                          | \$10,429,900.00 |  |
| INSTALLED COST \$/KW \$3,129                       |                 |  |
| Return on Equity                                   |                 |  |
| Discount Rate                                      | 7%              |  |
| Net Present Value over 80,000 Hours (\$2,168,308.5 |                 |  |
| Simple Payback, Years (without incentives) 10.52   |                 |  |

| Option #3 CHP Estimated Annual Emissions                             |                                                        |  |
|----------------------------------------------------------------------|--------------------------------------------------------|--|
| 3,159                                                                | CHP Net Capacity, kW                                   |  |
| 23,758                                                               | CHP Electricity, MWh                                   |  |
| 158,448                                                              | CHP Thermal used, MMBtu                                |  |
| 369,005                                                              | CHP Fuel input, MMBtu                                  |  |
| 15.5                                                                 | System Fuel Use, MMBtu/MWh                             |  |
| 8.0                                                                  | Displaced Boiler Fuel, MMBtu/MWh                       |  |
| 1816                                                                 | CHP Gross Emissions Factor - CO <sub>2</sub> , lbs/MWh |  |
| 876                                                                  | CHP Net Emissions Factor - CO <sub>2</sub> , lbs/MWh   |  |
| 20,820,390                                                           | CHP Net Emissions - CO <sub>2</sub> , lbs              |  |
| 1566 Ohio Grid Marginal Emissions Factor - CO <sub>2</sub> , lbs/MWh |                                                        |  |
| (16,381,727.22)                                                      | CHP Net Emissions Reduction - CO2, lbs                 |  |
| (8,190.86)                                                           | CHP Net Emissions Reduction - CO <sub>2</sub> , tons   |  |





- CHP can provide lower operating costs, reduced emissions, increased energy reliability, enhanced power quality, and reduced grid congestion
- The Midwest CHP TAP can provide technical assistance to help your facility explore CHP solutions
- The program is evolving in 2024 stay tuned!



# Questions

## Graeme Miller

#### Assistant Director US DOE Midwest CHP Technical Assistance Partnership gmille7@uic.edu (773) 916-6019





www.energy.gov/chp