

"Coalition of the Willing"*

Acknowledgment

We all have lots of **other** work that needs to get done.

Today's Agenda

- Overview for new folks
- Group Updates (aka committees)
 - 1. Test Procedure
 - 2. Equipment Roadmap Specification
 - 3. Design and Installation
 - 4. Consumer and Installer Understanding

Discussion Topics

- Connected HVAC data vs. lab testing?
- What would help us collaborate more effectively?
- Other?

Next Gathering

• Renewable Heating and Cooling Workshop

UC Davis Workshop Highlights

What we know

- HSPF and SEER are poor proxies
- We don't really know what the right solution is
- Increased pressures for in Demand Responsiveness & Decarbonization

• What is emerging

- Convergence of multiple technologies will transform current products
- New Canadian Test Procedure may provide a better performance proxy
- Barrier and Challenges Identification
- Vision and Next Steps Identified

Why a HP Coalition?

- 1. Share common learnings
- 2. Pool Resources
- 3. Convey scale and potential to manufacturers

Why Now?

- 1. Enormous Potential
- 2. We Need Real World Performance
 - HPs are not meeting performance expectations
 - CSA EXP-07 Test Procedure is finally done
- 3. Technology is "rapidly" changing what is possible
 - Variable Capacity Cold Climate heat pumps
 - Advanced HX
 - Refrigerant changes
 - Connected Intelligence

GOAL = Real World Performance

Pie chart is illustrative, not based on specific field and lab testing

How Do We Move the Future to Today?

		Future Market	
Technology Capability	Real World SCOP = ~2.2 Min Temp = 5 F	Barrier Removal	Real World SCOP = 3.2 Min Temp = -20 F Automatically Optimized
Consumer Experience	Expensive Confusing Noisy "Cold Blow" when defrosting		Easily Identified Readily Available Differentiated Dealers
Program Design	SEER/HSPH Spec Driven Install Requirements Post install verification Complicated Evaluation		Clear Criteria Post install data Performance incentives

Group 1 Lab Test Procedure

- 1. Validate Test Procedure to field performance
- 2. Secure Funds for Testing EXP07
- 3. Testing to Characterize 3Rs
 - Repeatability
 - Reproduceability
 - Representativeness
- 4. Develop Value Proposition
 - Manufacturers
 - Utility / EE Orgs
 - Codes & Standards

5. AEDM Process Application

(alternative efficiency determination method)

Accurate Test						
Procedure						
Christopher Dymond						
Gary Hamer						
Bruce Harley						
Marshall Hunt						
David Lis						
Joanna Mauer						
Mark Modera						
Jonathan Moscatello						
Reinhard Radermacher						
Myuala Suami						

SEER and HSPF are Poor Proxies

HSPF

California Central Valley Laboratory Houses

Available Reports:

http://www.etcc-ca.com/reports/variable-compressor-speed-heat-pumps

https://www.etcc-ca.com/reports/central-valley-research-homes-evaluation-ducted-and-ductless-configurations-variable

SEER

CSA EXP-07 ----- what makes it different

Indoor room load simulated by test equipment Heat Pump operates under its own controls

Imposed load is adjusted with outdoor temp

SCOP results better match actual performance

CSA EXP07 Testing Results

NEEA Funded Testing																					
NEEP CC HP D	atabase Info						Heating	SCOP							Cooling						
Nominal	HSPF																				
Capacity	(Region	5 F	17 F	47 F		Date	Sub	Very	Cold	Cold			Hot		Very	Cold	Cold			Hot	
(cooling)	IV)	COP	COP	COP		Completed	Arctic	Cold	Dry	Humid	Marine	Mixed	Humid	Hot Dry	Cold	Dry	Humid	Marine	Mixed	Humid	Hot Dry
11,000	12.00	2.70	2.83	4.70	NEEA 1	1/20/2019	1.72	2.19	2.68	2,43	3.28	2.94	3.25	3.14	4.03	4.67	4.02	4.65	3.98	4.07	4.58
12,000	12.50	2.83	3.26	4.20	NEEA 2	TBD															
12,000	12.00	1.80	3.17	4.45	NEEA 3	2/20/2019	1.80	2.35	2.91	2.63	3.81	3.25	3.76	3.61	5.04	4.38	4.95	4.12	4.83	5.08	3.90
10,900	12.00	8.37	2.92	3.91	NEEA 4	TBD															
12,000	12.00	2.83	2.47	3.60	NEEA 5	TBD															
12,000	14.00	3.70	2.64	4.24	NEEA 6	TBD															
12,000) 📕 10.00	3.70	2.64	3.54	NEEA 7	TBD															
24,000	11.20	3.30	2.73	4.35	NEEA 8	TBD															
33,000	11.00	2.54	2.20	3.66	NEEA 9	TBD															
24,000) 10.50	2.33	2.49	4.61	NEEA 10	TBD															
18,000	10.60	3,76	2.92	4.11	NEEA 11	TBD															
12,000	10.50	2.25	3.15	3.15	NEEA 12	TBD															

Natural Resources Canada Funded Testing																					
NEEP CC HP Da	tabase Info						Heating	SCOP							Cooling						
Nominal	HSPF]																
Capacity	(Region					Date	Sub	Very	Cold	Cold			Hot		Very	Cold	Cold			Hot	
(cooling)	IV)	5 F COP	17 F COP	47 F COP		Completed	Arctic	Cold	Dry	Humid	Marine	Mixed	Humid	Hot Dry	Cold	Dry	Humid	Marine	Mixed	Humid	Hot Dry
17,200	11.00	2.05	2.93	8.36	NRCan1	Mar-18															
12,000	13.80	1.84	3.18	4.64	NRCan2	Jun-18															
12,000	10.30	2.25	3.14	3.14	NRCan3	Dec-18	1.49	1.88	2.25	2.08	2.76	2.47	2.69	2.64	5.46	4.85	5.43	4.61	5.36	5.51	4.38
15,000	11.30	3.11	2.82	3,78	NRCan4	Feb-19															
15,000	12.50	1.16	1.47	3.81	NRCan5	TBD															
11,500	12.50	4.15	3.49	4.26	NRCan6	TBD															
#N/A	#N/A	#N/A	#N/A	#N/A	NRCan7	TBD															
#N/A	#N/A	#N/A	#N/A	#N/A	NRCan8	TBD															
#N/A	#N/A	#N/A	#N/A	#N/A	NRCan9	TBD															
#N/A	#N/A	#N/A	#N/A	#N/A	NRCan10	TBD															
#N/A	#N/A	#N/A	#N/A	#N/A	NRCan11	TBD															
#N/A	#N/A	#N/A	#N/A	#N/A	NRCan12	TBD															

Individual Test Point COP

Climate Weighted SCOP Values

Heating SCOP	
Sub Arctic	1.80
Very Cold	2.35
Cold Dry	2.91
Cold Humid	2. <mark>63</mark>
Marine	3.81
Mixed	3.25
Hot Humid	3.76
Hot Dry	3.61

Cooling SCOP	_
Very Cold	5.04
Cold Dry	4.38
Cold Humid	4.95
Marine	4.12
Mixed	4.83
Hot Humid	5.08
Hot Dry	3.90

Lab Observation Anomolies

Started 02/12/19 08:10:03 - System PsyRoom8 - Stall PsyRoom8

Some machines behave oddly

This makes it challenging to identify when convergence has been achieved

Cooling Convergence is typically quick but some modes are unstable

Short cycling for an hour before settling into variable capacity mode

Finding it's "groove"

HE (Marine) is a great example of a unit running for an extended period of time (+60 min) before it finds its groove; similar to the step response example I referenced in a previous email (seen below).

Field Observation Anomalies

Low Load short cycling leads to annual efficiency loss > 30%

Unexpected Behavior

Cycling at Low Temps

Group 2 Roadmap Specification

1. Define Value Propositions

- Programs
- Manufactures
- Contractors
- Customers

2. Meet with Manufacturers – Collaborate with Willing

- What is possible
- What are major challenges

3. Define Elements of Specs

- Data Reporting Needs
- Integrated Controls
- Performance tiers
- Product features

4. Socialize and build support

Equipment Roadmap
Specification
Jerine ahmed
Mark Alatorre
Nick Dunfee
Christopher Dymond
Todd Greenwell
Gary Hamer
Bruce Harley
Randall Higa
David Lis
Cheryn Metzger
Jonathan Moscatello
Chris Perry
Reinhard Radermacher
Andrea Salazar
Mvuala Suami
Robert Weber
Jay Stien

Value Proposition - Manufacturer

- We always Need More Power
- Your products have untapped market potential

Top 4 Low-Carbon Solutions

Technical potential of customer side solutions by 2050

	Application	Source Energy Use (Quads)						
		2018	2050	Energy Savings				
	Electric Cars and Trucks	15	3	12				
	Photovoltaics	-0.2	-9	9				
Gas and Electric HPs	Heat Pumps	11	3	8				
	LED Lighting	3	1	2				

Market Transformation Potential of the ASHP - 2018 ACEEE Paper Excerpt

The ASHP systems are based on a seasonal COP of 2.2 for water heating and 3.3 for space heating sourced by a 50% efficient electrical grid (generation, transmission and distribution losses). 50% efficient is high, but chosen as a proxy for a gas turbine + renewable energy dominated utility grid likely by 2050. The iASHP systems could also powered on-site by gas. Such systems would need COP values not much higher than 1.1 for water heating and 1.65 for space heating to provide the equivalent source energy reduction. The lighting baseline estimate is adjusted to pre LED conditions NEEA's building stock assessment (NEEA) values, with end state efficacy estimates of 100 lm/W for residential lighting and 150lm/W for commercial. The photovoltaic "savings" are based on a projected 1000 GWp of installed capacity under a solar resource of 1400 kWh/Wp.

Advanced Heat Pumps

If they had a good "meter"

Our Assumption – Future HPs will

- Be internet connected
- Include machine learning
- Continuous commissioning
- Collect performance data
- Provide contractor feedback

Are your products capable of real world performance?

Coalition* Plan

- 1. Work with 3 Manufacturers to Develop a Real World Performance Approach (2019)
- 2. Publish and Build Support for the Approach
- 3. Provide Market Support
 - Build Consumer Awareness
 - HVAC Trades Recognition
 - Performance Based Incentives

Manufacturer Meetings Being Scheduled

- 5 Major Manufacturers were very interested in collaboration
- 3-5 to visit each manufacturer's Product Manager Team
 - Canada
 - NW
 - NE
 - Midwest
 - California
- NDAs required

Drafting The Roadmap Specification

- Draft just begun --- collaborators welcome
- Features
 - Performance (based on SCOP?)
 - Data Reporting (post install?)
 - Demand Response
 - Comfort Criteria
 - Operating Ranges

Group 3 Design and Installation

- 1. Create Decision Tree
- 2. Design use Cases
- 3. Develop guidance for contractors
- 4. Develop Installation Specs
- 5. Refine QA Specs
- 6. Get Industry Feedback
- 7. Conduct Q/A on Program Efforts

Design	& Install Spec				
Mark A	latorre				
Suzi Ası	mus				
Mark Baines					
Andrew Belden					
Nick Du	infee				
Christo	pher Dymond				
Bruce Harley					
Bruce N	/lanclark				
Cheryn	Metzger				
Mark M	lodera				

Group 4 Installer and Consumer Understanding

- 1. Market Research Understand Market Actors
 - Customer
 - Distributor
 - Installer
- 2. Develop Value proposition for various audiences
- 3. Establish Heat Pump Association
- 4. Develop Marketing Campaigns
- 5. Deploy Marketing Campaign
- 6. Follow-up and Feedback

Consum	er & Installer					
Understanding						
Suzi Acr						
Androw	Roldon					
Andrew	Beiden					
Nick Dur	nfee					
Todd Greenwell						
Owen Ho	owlett					
David Lis	5					
Cheryn	Metzger					
Jonathar	n Moscatello					
Brenda F	Pike					
David Poderson						
Arun Ve	dhathiri					
David Pc	derson					
Androa	Salazar					

Connected HVAC data vs. lab testing?

What would help us collaborated more effectively?

How to Contribute

1. Attend NEEP Renewable Heating and Cooling Workshop

DATE:Early June?LOCATION:Boston

2. Join a Subgroup

- 1. Test Procedure
- 2. Roadmap Spec
- 3. Design and Installation
- 4. Customer and Installer
- 3. Share your research results
- 4. Co-fund lab testing
- 5. Other?

Thank You

Send me an email if you want to be part of the coalition.

cdymond@neea.org

Sizing challenge of low turndown equipment

This example shows that a machine might never operate in between min and max and thus not take advantage of variable capacity benefits