

Residential Energy Code – Session 2 Building Science and Moisture Management

Instructor: Matt Belcher February 2, 2021: 6:30-8:30pm

Today's Agenda

Building Science Basics Moisture Management Air Movement Heat Transfer Quality Management Performance Testing Wrap Up & Quiz

Housekeeping

Attendees are muted upon entry

Questions? Enter them in the chat box

Webinar is being recorded – slides and recording will be sent to attendees

CEU's will be available upon request (ICC)
 Information at end of presentation

Email <u>nwestfall@mwalliance.org</u> with questions

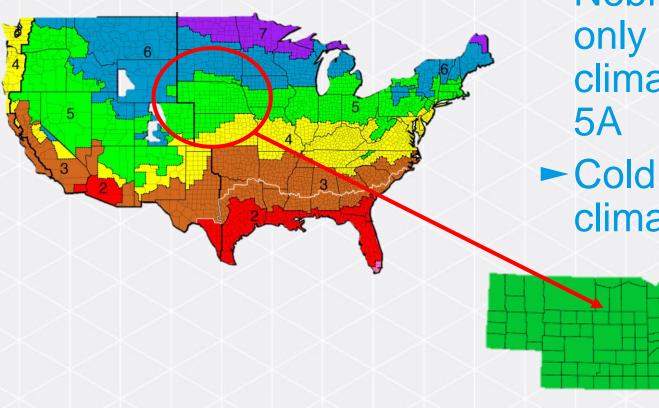
BUILDING SCIENCE BASICS

Architecture should be dedicated to keeping the outside out and the inside in.

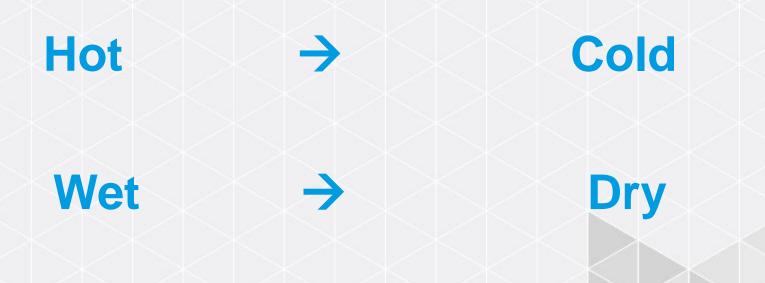
Leonard Baskin

- Building science is the collection of scientific knowledge that focuses on physical phenomena affecting buildings.
- In other words Building Performance!
 - Building Envelope
 - Mechanical Systems
 - Lighting Systems
 - Occupant Health and Comfort

The first rule of building science is...


Moisture <u>will always</u> get where you don't want it to go

The first question of building science is...

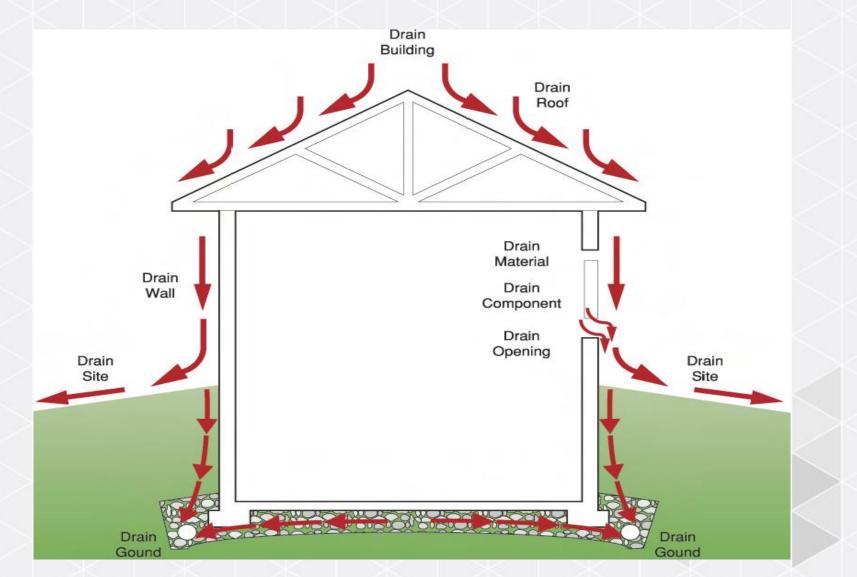

<u>How</u> will the moisture get out?

The 1st Consideration is Climate Zone

 Nebraska has only one climate zone – 5A
 Cold & Moist climate

Advanced Physics in Building Science

It's that simple!


The major "damage functions"

- Liquid water (bulk and capillary)
- Air-borne water
- ► Vapor
- Radiation (UV degradation)
- ► Pests
- ► People

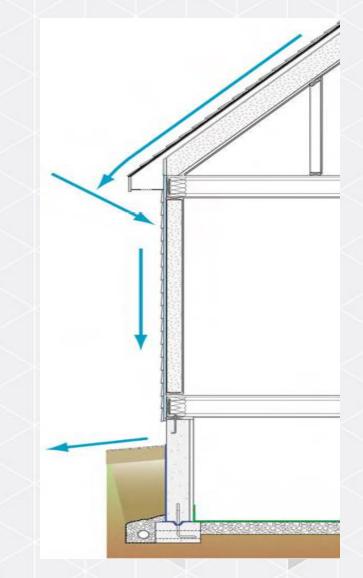
MOISTURE MANAGEMENT

Water: A Builder's Worst Enemy

Prioritizing Moisture Movement

- #1 Bulk Water
- #2 Capillary Water
- #3 Air-transported Water
- #4 DiffusiveMoisture Management

ICE


WATER

VAPOR

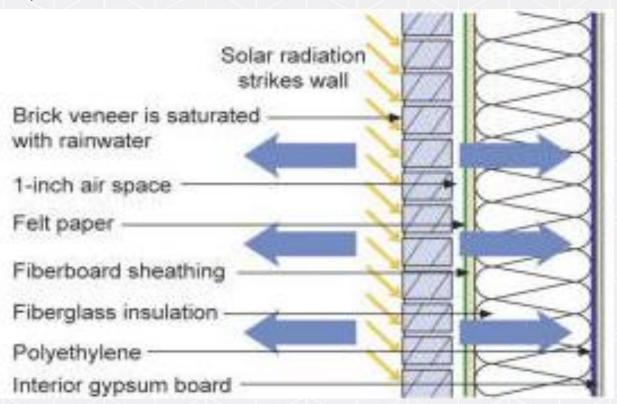
Managing Bulk Moisture – Priority #1

Planning for proper drainage is the best way to effectively deal with bulk moisture/water

Keep water out of and away from building

Bulk Water Management – Priority #1

- Flow is not a straight line
 - Lateral cohesive movement
 - Wind-driven rain
- Can involve LOTS of water—from an outside or inside source



Always Allow for Drying

Exterior Conditions Temperature: 80° F Relative Humidity: 75% Vapor Pressure: 2.49 kPa

Conditions Within Cavity

Temperature: 120° F Relative Humidity: 100% Vapor Pressure: 11.74 kPa

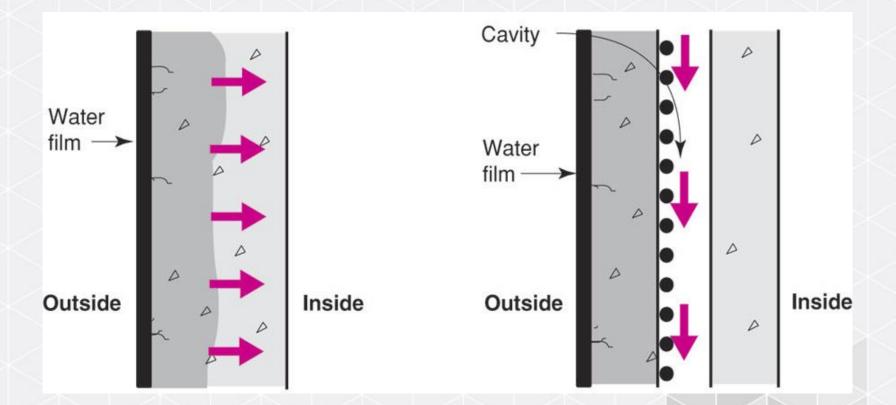
Interior Conditions Temperature: 75° F Relative Humidity: 60% Vapor Pressure: 1.82 kPa

Vapor is driven both inward and outward by a high vapor pressure differential between the brick and interior and the brick and exterior

Properly Lap Flashing

► The mason's flashing (black) was installed after and in front of the house wrap (green). This is reverse flashing that will trap any drain water that gets past the brick veneer.

Direct Water Away from Corners



No Kick-Out Flashing

Effectively Sheds Water

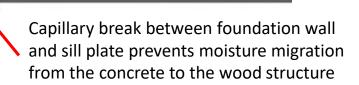
Capillary Moisture Flows – Priority #2

Capillary suction draws water into porous material and tiny cracks

Cavity acts as capillary break and receptor for capillary water interrupting flow

Image courtesy of Building Science Corp.

Foundation Moisture Management


Grade is sloped to drain water away from the foundation

CARDEN LINE TO ALL THE

Exposed portion of foundation wall able to dry to exterior

Damp-proofing limits moisture flow from soil

Water against the foundation wall drains down the free draining backfill and out the perimeter drain at the footing

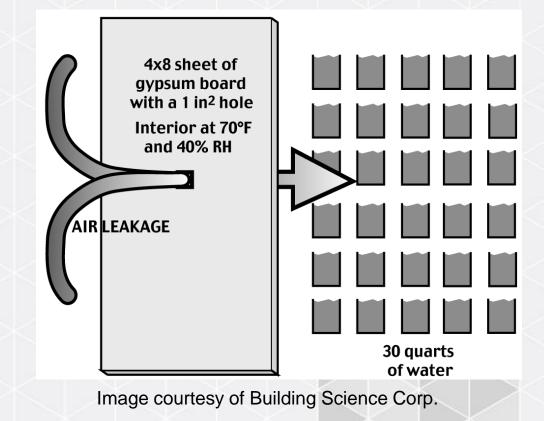
Polyisocyanurate limits moisture flow from the interior during winter

Gravel pad and polyethylene limit moisture migration from the soil into the crawlspace

Capillary break between footing and foundation wall

Gravel pad is connected to the perimeter drain through pipes cast into the footing

Sill Plates Need Capillary Breaks



Air Transport of Moisture – Priority #3

Air leakage

- Moisture flow
 - 4X8 Drywall
 - ► 70 F
 - ► 40% RH
 - 1 square inch hole
- Flow quantity
 - 30 Quarts of water!!

A Critical Tool in the Fight Against Moisture

- Blower door tests quantify a home's air tightness
- Proper building tightness will help:
 - Reduce energy consumption
 - Avoid moisture condensation
 - Avoid uncomfortable drafts caused by cold air leaking in
 - Help maximize proper HVAC performance

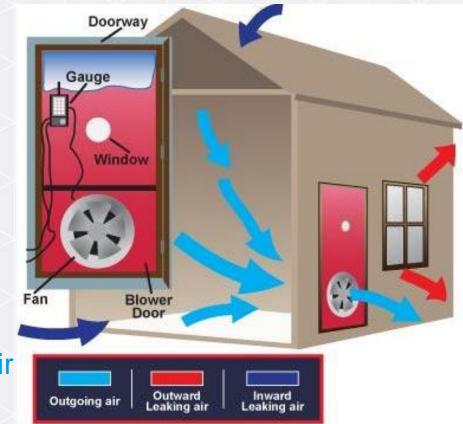
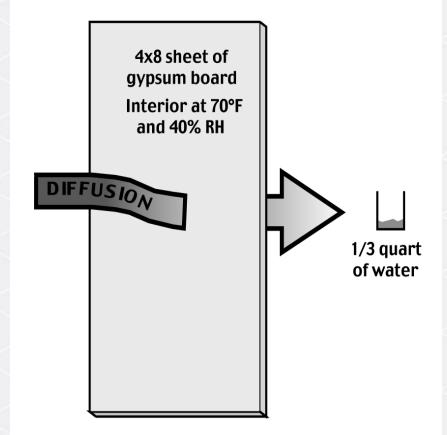



Image courtesy of Building Performance Institute

Diffusion – Priority #4

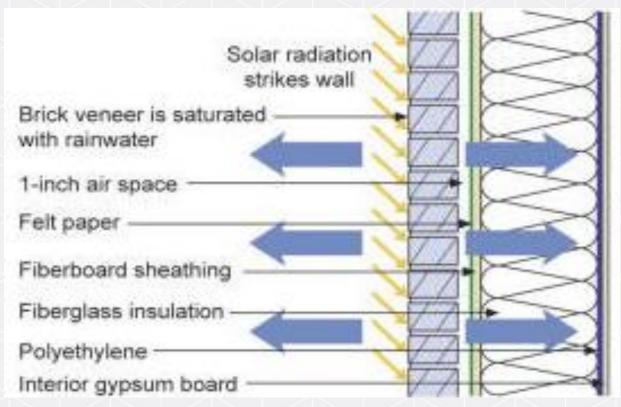
- Migration of moisture by means of vapor pressure differential
 Occurs in either direction based on climate conditions and
 - exterior/interior levels of humidity
- Different materials have different permeability

Perm Rating - How Vapor Moves Through Building Materials

Vapor permeability – how fast water vapor moves through a material

 $\blacktriangleright \text{Perm} = \frac{\text{grain}}{(\text{hr} \cdot \text{in Hg} \cdot \text{ft}^2)}$

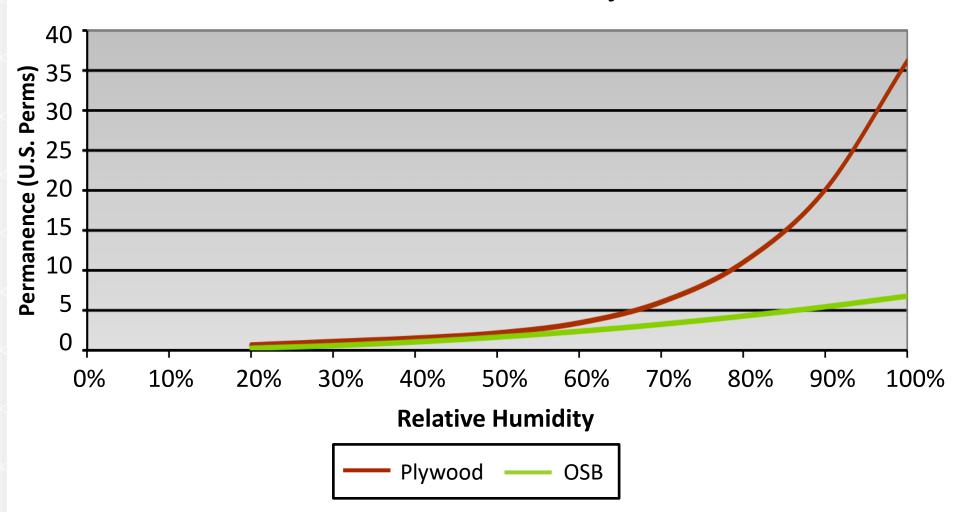
Perm Rating	Permeability
<0.1	Impermeable
>0.1 but <1	Low permeability
1-5	Semi-permeable
>5	Vapor Permeable


Practical Application: Solar-Driven Moisture in Brick Veneer

Exterior Conditions

Temperature: 80° F Relative Humidity: 75% Vapor Pressure: 2.49 kPa

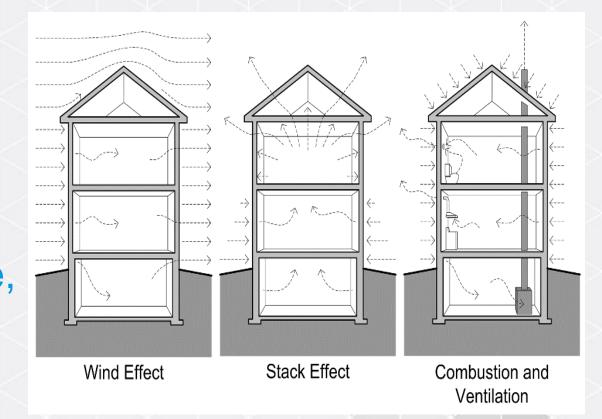
Conditions Within Cavity Temperature: 120° F Relative Humidity: 100% Vapor Pressure: 11.74 kPa


Interior Conditions Temperature: 75° F Relative Humidity: 60% Vapor Pressure: 1.82 kPa

Vapor is driven both inward and outward by a high vapor pressure differential between the brick and interior and the brick and exterior

Permeability Can Change! OSB vs Plywood

Permeance for 1/2" OSB & Plywood



AIR MOVEMENT

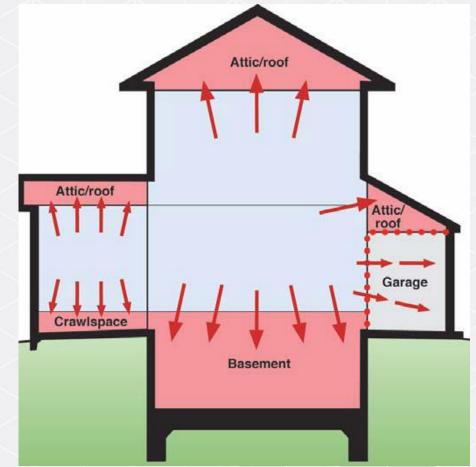
How Does Air Get Around?

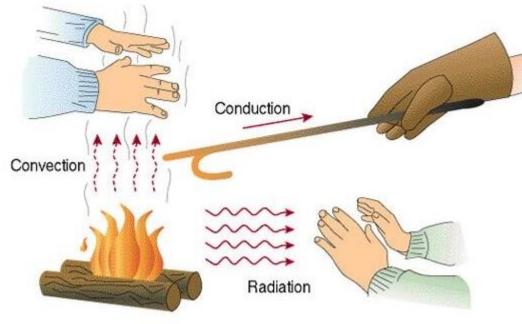
- ► Pressure differential eventually evens out \blacktriangleright Air in = Air Out ► For air to move, you need: - A hole
 - A driving force
 - Another hole

Internally Generated Air Pressure

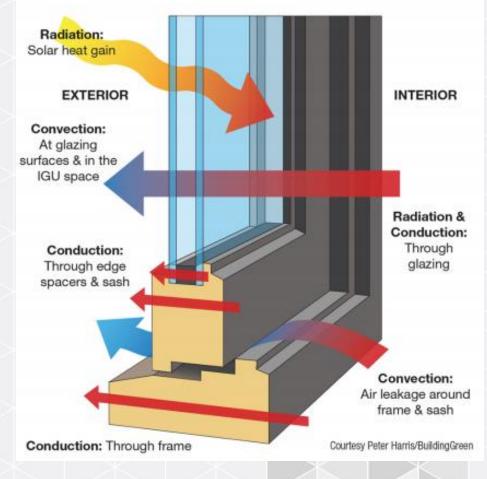
Expansion of Conditioned Space

- Conditioned space boundaries moving towards exterior surfaces of building
- Garage isolated from house by air barrier/pressure boundary
- Garage ventilated and conditioned independently of rest of conditioned spaces

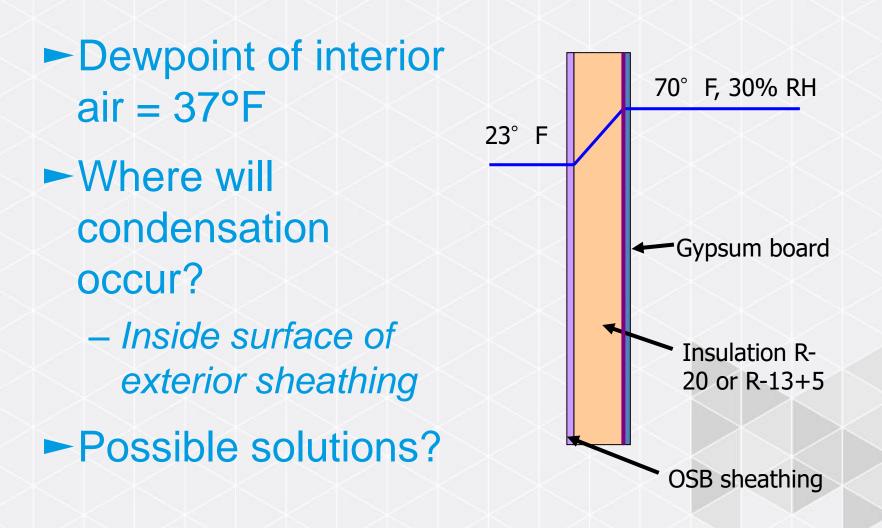



Image courtesy of Betzwood Associates

HEAT TRANSFER


Heat Transfers in 3 Ways

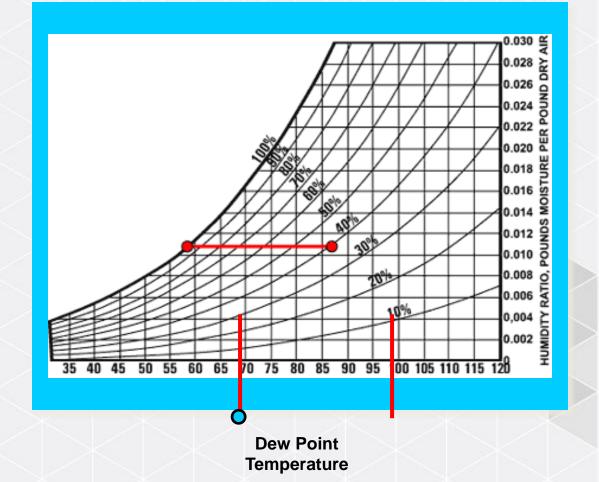
- Radiation Mostly windows
- Conduction Through solids
- Convection -Through fluids (liquid or gas)



Practical Application – Windows and Heat Transfer

- Heat always moves from hot to cold
- Heat transfer always occurs in a combination of ways
- Different rates of transfer can be important
- So how does low-e work?

Condensing Surface Temperatures



Condensation is REAL!

Psychometric Chart

If we know the air temperature and relative humidity, we know the dewpoint

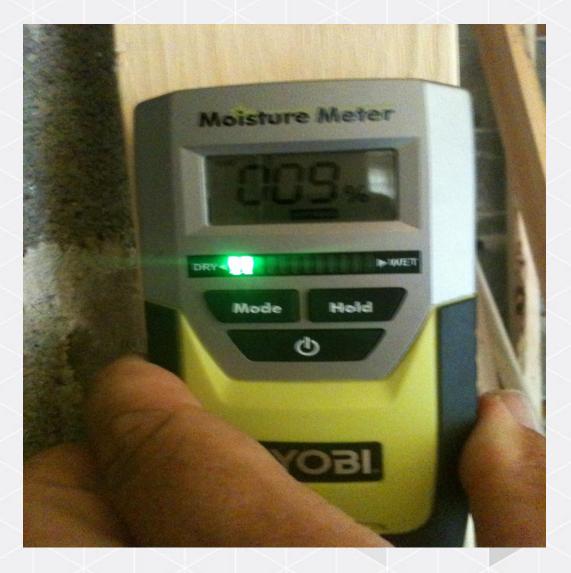
QUALITY MANAGEMENT

The Major Building Envelope Protection Systems

- Water Barrier
- ► Air Barrier
- Thermal Barrier
- Vapor Profile (not just the designated vapor retarder)
- Finishes (UV protection)
- Commissioning & Maintenance documents

Qualities of the Major Protection Systems

- ► Systematic
- Comprehensive
- Continuous
- Best Practices
- Each system should be addressed by at least one, preferably two, ideally three of the following:
 - Design; Materials; Workmanship


Quality Management

"You don't get what you expect, you get what you inspect!"

Quality Management

 Moisture
 Control testing prior to cover up

PERFORMANCE TESTING

Performance Testing – Data is Key

- Testing/verification important step in quality management
 Essential for
 - Building performance
 - Moisture management
 - Energy efficiency
 - Health and comfort of occupants

HVentilateAC: Minimum Ventilation Guideline

- Blower door test result is in CFM.
- Converting to ACH creates a baseline for a building's MVG:
 - — ≥ the MVG, then no additional ventilation is needed.
 - ≤ the MVG, then mechanical ventilation is required.
- Achieving the MVG should be planned for in advance.

Air Leakage Test Report

- Documents home's performance
- Required by code and above code programs
- Third-party verification (some areas; performed by Inspectors)
- Provides data for final equipment adjustment and energy use/cost forecast
- Great liability protection for builder/designer

AIR LEAKAGE REPORT				
Date:	May 02, 2012	Rating No.:	8016891 - 097	
Building Name:	802EastMcCartyStreet	Rating Org.:	ASERusa	
Owner's Name:	River City Habitat for Humanit	Phone No.:	314-894-2300	
Property:	802 East McCarty Street	Rater's Name:	Gary Fries	
Address:	Jefferson City, MO 65101	Rater's No .:	8016891	
Builder's Name:	River City Habitat for Humanit			
Weather Site:	Columbia, MO	Rating Type:	Confirmed	
File Name:	8016891 - 097 - eSTAR 2.0, TC, NR - 802 East M	Rating Date:	12/01/11	

		Blower door test		
use Infiltration		Heating	Cooling	
	NaturalACH:	0.23	0.16	
	ACH @ 50 Pascals:	3.78	3.78	
	CFM @ 25 Pascals:	427	427	
	CFM @ 50 Pascals:	670	670	
	Eff. Leakage Area: [sq.in]	36.8	36.8	
	Specific Leakage Area:	0.00018	0.00018	
	ELA/100 sf shell: [sq.in]	0.96	0.96	

Whole Ho

Ventilati

Duct Leakage	Leakage to Outside Units	Ductwork
	CFM @ 25 Pascals:	25
	CFM25 / CFMfan:	0.0214
	CFM25/CFA:	0.0181
	CFM per Std 152:	N/A
	CFM per Std 152 / CFA:	N/A
	CFM @ 50 Pascals:	39
	Eff. Leakage Area: [sq.in]	2.15
	Thermal Efficiency:	N/A
	Total Duct Leakage Units	CFM25/CFA
	Total Duct Leakage:	0.0181

Mechanical:	Air Cycler
Sensible Recovery Eff. (%):	0.0
Total Recovery Eff. (%):	
Rate (cfm):	
Hours/Day:	24.0
Fan Watts:	150.0
Cooling Ventilation:	Natural Ventilation

ASHRAE 62.2 - 2010 Ventilation Requirements

For this home to comply with ASHRAE Standard 62.2 - 2010 Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings, an innimum of 44 cfm of mechanical ventilation must be provided continuously. 24 hours per day. Alternatively, an intermittently operating mechanical ventilation system may be used if the ventilation rate is adjusted accordingly. For example, a 88 cfm mechanical ventilation system would need to operate 12 hours per day, as long as the system operates to provide required average ventilation once each hour.

REM/Rate - Residential Energy Analysis and Rating Software v12.98

This information does not constitute any warranty of energy cost or savings © 1985-2012 Architectural Energy Corporation, Boulder, Colorado.

						AGE REPORT	
				Date: May 02,	2012	Rating No.:	8016891 - 097
Datas	May 02 2012	Dating	01150001	Building Name: 802Eas	McCartyStreet	Rating Org.:	ASERusa
Date:	May 02, 2012	Rating	81158891-		ty Habitat for Humanit	Phone No.:	314-894-2300
				Property: 802 East	t McCarty Street	Rater's Name:	Gary Fries
		No.:	901		n City, MO 65101	Rater's No.:	8016891
			501		ty Habitat for Humanit	reator 5 rest.	0010001
				Weather Site: Columb		Rating Type:	Confirmed
Duilding	100 Main	Dating	Detero	File Name: 801689	- 097 - eSTAR 2.0, TC, NR - 802 East		12/01/11
Building	123 Main	Rating	Raters				
						Blower	door test
Name:	Street	Org.:	USA	Whole House Infiltra	tion	Heating	Cooling
lamor	Olioot	orgi	00/1		NaturalACH:	0.23	
					ACH @ 50 Pascals:	3.78	
Ownore	Jane Smith	Dhone	555 555		CFM @ 25 Pascals:	427	
Owners	Jane Smith	Phone:	555-555-		CFM @ 50 Pascals:	670	
					Eff. Leakage Area: [sq.in]	36.8	
Name:			5555		Specific Leakage Area: ELA/100 sf shell: [sq.in]	0.0018	
lame.			0000		ELAVIOU SI Sheli. [sq.in]	0.90	0.96
				Duct Leak	Leakage to Outside Units	Ductwork	7
Duananta	100 Main	Deterio	la la se		CFM @ 25 Pascals:	25	1
Property	123 Main	Rater's	John		CFM25 / CFMfan:	0.0214	
	XC- CONTRACTOR				CFM25/CFA:	0.0181	1
Address:	Street	Name:	Williams		CFM per Std 152:	N/A	
Auuress.	Slieel	Name.	vvillani5		CFM per Std 152 / CFA:	N/A	
					CFM @ 50 Pascals:	39	
	Omaha, NE				Eff. Leakage Area: [sq.in]	2.15 N/A	
	emana, me				Thermal Efficiency: Total Duct Leakage Units	CFM25/CFA	4
	68007				Total Duct Leakage	0.0181	-
	00007				Fotar Daot Countage.	0.0101	
				Ventil	tion Mechanical:		Air Cycle
	400		1001507		Sensible Recovery Eff. (%):	0.0
Builder's	ABC	Rater's	1234567		Total Recovery Eff. (%):		0.0
	1100	i tatoi e	1201001		Rate (cfm):		50
Name:	Construction	No:			Hours/Day:		24.0
Naille.	CONSTRUCTION	INO.			Fan Watts: Cooling Ventilation:		150.0
					Cooling Ventilation:		Natural Ventilation
Manthan		Dettern	O and Carrier of		ASHRAE 62.2 - 2010	Ventilation Requir	ements
Weather	Omaha, NE	Rating	Confirmed	For this home to com			
		-			oly with ASHRAE Standard 62.2 - 2010 Buildings, a minimum of 44 cfm of me		
Site:		Type:		24 hours per day. Alte	rnatively, an intermittently operating m	echanical ventilation	n system may be us
one.		Type.			sted accordingly. For example, a 88 cl		
				operate 12 hours per hour.	day, as long as the system operates to	provide required a	verage venulation o
Tile Manuel	40400004	Dethe	10/01/00				
File Name:	101682391-	Rating	12/01/20				
						A	
	097 eSTAR	Date:			REM/Rate - Residential Energy This information does not constitut	-	-

Whole House Infiltration

	Blower Door Test		
	Heating	Cooling	
Natural ACH:	0.23	0.16	
ACH @ 50 Pascals:	3.78	3.78	
CFM @ 25 Pascals:	427	427	
CFM @ 50 Pascals:	670	670	
Eff. Leakage Area (sq. in)	36.8	36.8	
Specific Leakage Area:	0.00018	0.00018	
ELA/100 sf shell (sq. in)	0.96	0.96	

AIR LEAKAGE REPORT				
Date:	May 02, 2012	Rating No.:	8016891 - 097	
Building Name:	802EastMcCartyStreet	Rating Org .:	ASERusa	
Owner's Name:	River City Habitat for Humanit	Phone No.:	314-894-2300	
Property:	802 East McCarty Street	Rater's Name:	Gary Fries	
Address:	Jefferson City, MO 65101	Rater's No .:	8016891	
Builder's Name:	River City Habitat for Humanit			
Weather Site:	Columbia, MO	Rating Type:	Confirmed	
File Name:	8016891 - 097 - eSTAR 2.0, TC, NR - 802 East M	Rating Date:	12/01/11	

		Discuss de	and the st	
Whole House Infiltration		Heating	Cooling	
	NaturalACH:	0.23	0.16	
	ACH @ 50 Pascals:	3.78	3.78	
	CFM @ 25 Pascals:	427	427	
	CFM @ 50 Pascals:	670	670	
	Eff. Leakage Area: [sq.in]	36.8	36.8	
	Specific Leakage Area:	0.00018	0.00018	
	ELA/100 sf shell: [sq.in]	0.96	0.96	
Duct Leakage	Leakage to Outside Units	Ductwork		
	CFM @ 25 Pascals:	25		
	CFM25 / CFMfan:	0.0214		
	CFM25/CFA:	0.0181		
	CFM per Std 152:		N/A	
	CFM per Std 152 / CFA:	N/A		
	CFM @ 50 Pascals:	39		
	Eff. Leakage Area: [sq.in]	2.15		
	Thermal Efficiency:	N/A		
	Total Duct Leakage Units	CFM25/CFA		
	Total Duct Leakage:	0.0181		
Ventilation	Mechanical:		Air Cycler	
	Sensible Recovery Eff. (%):		0.0	
	Total Recovery Eff. (%):		0.0	
	Rate (cfm):		50	
	Hours/Day:		24.0	
	Fan Watts:		150.0	
	Cooling Ventilation:	1	atural Ventilation	

ASHRAE 62.2 - 2010 Ventilation Requirements

For this home to comply with ASHRAE Standard 52.2 - 2010 Venilation and Acceptable Indoor Air Quality I Low-Rise Residential Buildings, a minimum of 44 cm of mechanical venilation must be provided continuously, 24 hours per day. Alternatively, an intermittently operating mechanical venilation system may be used if the venilation rate is adjusted accordingly. For example, a 88 cfm mechanical venilation system would need to operate 12 hours per day, as long as the system operates to provide required average venilation once each hour.

REM/Rate - Residential Energy Analysis and Rating Software v12.98

This information does not constitute any warranty of energy cost or savings. © 1985-2012 Architectural Energy Corporation, Boulder, Colorado.

Duct Leakage

Leakage to Outside Units	Ductwork	
CFM @ 25 Pascals:	25	\times
CFM25/CFM fan:	0.0214	
CFM25/CFA:	0.0181	\times
CFM per Std 152:	N/A	2
CFM per Std 152/CFA:	N/A	
CFM @ 50 Pascals:	39	
Eff. Leakage Area (sq. in.)	2.15	
Thermal Efficiency:	N/A	
Total Duct Leakage Units:	CFM25/CFA	
Total Duct Leakage:	0.0181	\times

AIR LEAKAGE REPORT				
Date:	May 02, 2012	Rating No.:	8016891 - 097	
Building Name:	802EastMcCartyStreet	Rating Org .:	ASERusa	
Owner's Name:	River City Habitat for Humanit	Phone No.:	314-894-2300	
Property:	802 East McCarty Street	Rater's Name:	Gary Fries	
Address:	Jefferson City, MO 65101	Rater's No .:	8016891	
Builder's Name:	River City Habitat for Humanit			
Weather Site:	Columbia, MO	Rating Type:	Confirmed	
File Name:	8016891 - 097 - eSTAR 2.0, TC, NR - 802 East M	Rating Date:	12/01/11	

		Blower do	oor test	
ole House Infiltration		Heating	Cooling	
	NaturalACH:	0.23	0.16	
	ACH @ 50 Pascals:	3.78	3.78	
	CFM @ 25 Pascals:	427	427	
	CFM @ 50 Pascals:	670	670	
	Eff. Leakage Area: [sq.in]	36.8	36.8	
	Specific Leakage Area:	0.00018	0.00018	
	ELA/100 sf shell: [sg in]	0.96	0.96	
Duct Leakage	Leakage to Outside Units	Ductwork		
	CFM @ 25 Pascals:	25		
	CFM25 / CFMfan:	0.0214		
	CFM25/CFA:	0.0181		
	CFM per Std 152:	N/A		
	CFM per Std 152 / CFA:	N/A		
	CFM @ 50 Pascals:	39		
	Eff. Leakage Area: [sq.in]	2.15		
	Thermal Efficiency:	N/A		
	Total Duct Leakage Units	CFM25/CFA		
	Total Duct Leakage:	0.0181		
Ventilation	Mechanical:		Air Cy	
		Sensible Recovery Eff. (%):		
	Total Recovery Eff. (%):			
	Rate (cfm):			
	Hours/Day:		2	
	Fan Watts:		15	
	Cooling Ventilation:	Natural Ven		

ASHRAE 62.2 - 2010 Ventilation Requirements

For this home to comply with ASHRAE Standard 52.2 - 2010 Venillation and Acceptable Indoor Air Quality I Low-Rise Reschartal Buildings, a minimum of 44 cm of mechanical venillation must be provided continuously, 24 hours per day. Alternatively, an intermittently operating mechanical venillation system may be used if the venillation rate is adjusted accordingly. For example, a 88 cfm mechanical venillation system would need to operate 12 hours per day, as long as the system operates to provide required average ventilation once each hour.

REM/Rate - Residential Energy Analysis and Rating Software v12.98

This information does not constitute any warranty of energy cost or savings. © 1985-2012 Architectural Energy Corporation, Boulder, Colorado.

Ventilation

Mechanical:	Air Cycler
Sensible Recovery Eff (%):	0.0
Total Recovery Eff (%):	0.0
Rate (cfm):	50
Hours/Day:	24
Fan Watts:	150.0
Cooling Ventilation:	Natural Ventilation

AIR LEAKAGE REPORT						
Date:	May 02, 2012	Rating No.:	8016891 - 097			
Building Name:	802EastMcCartyStreet	Rating Org .:	ASERusa			
Owner's Name:	River City Habitat for Humanit	Phone No.:	314-894-2300			
Property:	802 East McCarty Street	Rater's Name:	Gary Fries			
Address:	Jefferson City, MO 65101	Rater's No .:	8016891			
Builder's Name:	River City Habitat for Humanit					
Weather Site:	Columbia, MO	Rating Type:	Confirmed			
File Name:	8016891 - 097 - eSTAR 2.0, TC, NR - 802 East M	Rating Date:	12/01/11			

		Blower do	por test	
hole House Infiltration		Heating	Cooling	
	NaturalACH:	0.23	0.16	
	ACH @ 50 Pascals:	3.78	3.78	
	CFM @ 25 Pascals:	427	427	
	CFM @ 50 Pascals:	670	670	
	Eff. Leakage Area: [sq.in]	36.8	36.8	
	Specific Leakage Area:	0.00018	0.00018	
	ELA/100 sf shell: [sq.in]	0.96	0.96	
	-			
Duct Leakage	Leakage to Outside Units	Ductwork		
-	CFM @ 25 Pascals:	25		
	CFM25 / CFMfan:	0.0214		
	CFM25/CFA:	0.0181		
	CFM per Std 152:	N/A		
	CFM per Std 152 / CFA:	N/A		
	CFM @ 50 Pascals:	39		
	Eff. Leakage Area: [sq.in]	2.15		
	Thermal Efficiency:	N/A		
	Total Duct Leakage Units	CFM25/CFA		
	Total Duct Leakage:	0.0181		
Ventilation	Mechanical:		Air Cycle	
	Sensible Recovery Eff. (%):		0.0	
	Total Recovery Eff. (%):		0.0	
	Rate (cfm):		50	
	Hours/Day:		24.0	
	Fan Watts:		150.0	
	Cooling Ventilation:		atural Ventilation	

ASHRAE 62.2 - 2010 Ventilation Requirements

For this home to comply with ASHRAE Standard 52.2 - 2010 Venilation and Acceptable Indoor Air Quality I. Low-Rise Reselectinal Buildings, a minimum of 44 cm of mechanical venilation must be provided continuously, 24 hours per day. Alternatively, an intermittently operating mechanical venilation system may be used if the venilation rate is adjusted accordingly. For example, a 88 cfm mechanical venilation system would need to operate 12 hours per day, as long as the system operates to provide required average venilation once each hour.

REM/Rate - Residential Energy Analysis and Rating Software v12.98

This information does not constitute any warranty of energy cost or savings. © 1985-2012 Architectural Energy Corporation, Boulder, Colorado.

HVentilationAC: Minimum Ventilation

- Blower door test result must be ≤ 3ACH50 to be compliant
 - Air Changes per Hour
 @50 Pascals. ~20 MPH wind.
- Mechanical ventilation must be installed per 2018 M303.4

Key Takeaways

Building Performance includes:

- Building Envelope
- Mechanical Systems
- Lighting Systems
- Occupant Health and Comfort

Controlling moisture is *critical*

- Proper air sealing is key
- Mechanical ventilation must be installed and takes on new importance
- Performance testing is essential for quality building performance

Questions?

Submit a question in the chat or unmute yourself to ask a question

- What are the two Advanced Physics Principles applied to Building Science?
- a. Rich always goes to Poor. Smooth always goes to Fuzzy
- b. Wet always goes to Dry. Hot always goes to Cold
- c. Dry always goes to Wet. Cold always goes to Hot.
- d. Hard always goes to Soft. Small always goes to Large

- What are the two Advanced Physics Principles applied to Building Science?
- a. Rich always goes to Poor. Smooth always goes to Fuzzy
- b. Wet always goes to Dry. Hot always goes to Cold
- c. Dry always goes to Wet. Cold always goes to Hot.
- d. Hard always goes to Soft. Small always goes to Large

- What are the building science principles that are critical to building energy efficient and sustainable structures?
- a. Moisture Transfer, Air Transfer, Heat Transfer
- b. Component Transfer, Air Transfer, Moisture Transfer
- c. Heat Transfer, Property Transfer, Cold Transfer
- d. Cold Transfer, Wet Transfer, Cash Transfer

- What are the building science principles that are critical to building energy efficient and sustainable structures?
- a. Moisture Transfer, Air Transfer, Heat Transfer
- b. Component Transfer, Air Transfer, Moisture Transfer
- c. Heat Transfer, Property Transfer, Cold Transfer
- d. Cold Transfer, Wet Transfer, Cash Transfer

- What are three types of heat transfer that occur in buildings?
- a. Radiation, Component, Conviction
- b. Radiation, Carpet, Convection
- c. Radiation, Conduction, Convection
- d. Radiation, Hydrogen, Conventional

- What are three types of heat transfer that occur in buildings?
- a. Radiation, Component, Conviction
- b. Radiation, Carpet, Convection
- c. Radiation, Conduction, Convection
- d. Radiation, Hydrogen, Conventional

- What are two forms of moisture that can impact building durability?
- a. Wet, Dry
- b. Rain, Sun
- c. Bulk, Vapor
- d. Vapor, Retail

- What are two forms of moisture that can impact building durability?
- a. Wet, Dry
- b. Rain, Sun
- c. Bulk, Vapor
- d. Vapor, Retail

Resources

- Handouts on specific topics
 - Insulation installation
 - HVAC Right Sizing
 - Others coming soon
- Made to share with Trades/Subs, etc.

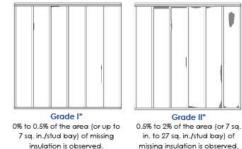
► Visit:

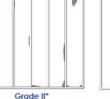
https://www.mwalliance.org/met ropolitan-community-collegeenergy-code-course

NEBRASKA RESIDENTIAL ENERGY EFFICIENCY PROGRAM

Guide to Grading Installations of Home Insulation

Why is having properly installed insulation important?


Gaps, voids and compressions in insulation allow hot or cold air into the wall cavities, ceilings and floors. These drafts result in decreased insulating value, increased heating and cooling expenses, and encourage the formation of condensation which leads to mold growth over time.


How can you tell if the insulation is up to code?

When insulation installation is assessed, assemblies are often classified as Grade I, Grade II or Grade III. These grades are determined by evaluating two criteria: missing insulation and compression. Grade I is the only grade considered to be code compliant for the prescriptive path, as it is generally installed according to maufacturers' instructions (2018 IECC Section R-303.2)

First Criteria: Missing Insulation

The first ariteria when determining an insulation installation's grade is measuring any missing insulation. (Diagrams based on Home Energy Rating System Standards)

More than 2% of the area (or more than 27 sq. in./stud bay) of missing insulation is observed.

1/2021

Second Criteria: Compression

The second criteria when determining insulation grade is measuring the level of compression.** Grade 1*: Up to 2% of the area can be compressed, and that compression must be no less than 70% of intended depth. Grade II*: Up to 10% of the area can be compressed, and that compression must be no less than 70% of intended depth. Grade III*: A total compression area of more than 10% (or more than 133 sq. in./stud bay).

BETT, OF ENVIRONMENT AND ENERS

in. to 27 sq. in./stud bay) of

NEBRASKA ΜΕΕΑ Good Life, Great Resources

Continuing Education Credits

Participants of this session are eligible for continuing education credits from the International Code Council

Course ID: 27056
CEUs: 0.20

If you would like a certificate of completion for this session, email Nicole at <u>nwestfall@mwalliance.org</u>

Next Week

 February 9, 2021, 6:30-8:30pm

Topic: Basic Building Science: Part 2

Contact Matt with Questions: <u>matt@verda-solutions.com</u>

SEE YOU NEXT WEEK!

