Workshop: State and Local Planning for Energy (SLOPE) Training

Midwest Building Energy Codes Conference November 8, 2022

Housekeeping

- Enter all questions you have for speakers in the Q&A feature
- Enter any other questions or comments in the chat
- Slides and recordings will be made available to participants after the conference
- Continuing Education Credits are available to participants information will be shared at the end of the presentation
- Email Corie Anderson, Building Policy Associate, at <u>canderson@mwalliance.org</u> with questions

- Introductions
- SLOPE Training
- Q&A Session

Speakers

Shannon Zaret

Energy Technology Program Specialist U.S. Department of Energy

Rachel Scroggins ORISE Fellow U.S. Department of Energy

Katie Richardson

Group Manager Innovation and Entrepreneurship Center, NREL

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

The State and Local Planning for Energy (SLOPE) Platform: The Ultimate Toolbox for Planning Your Clean Energy Future

November 8th 2:00 – 3:30pm ET

Agenda

How SLOPE Can Help Your Jurisdiction

Welcome & Introduction to the State and Local Planning for Energy (SLOPE) Platform

> SLOPE Demo: 'Scenario Planner' Tool, Transportation Data, and EEJ Data

SLOPE Demo: Integrating Other DOE Tools

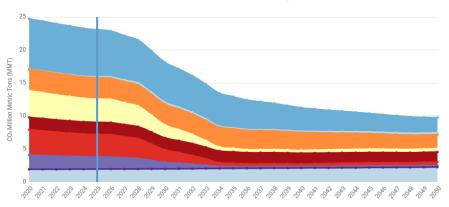
How States and Local Governments Are Using SLOPE

Q&A 05

01

02

03


04

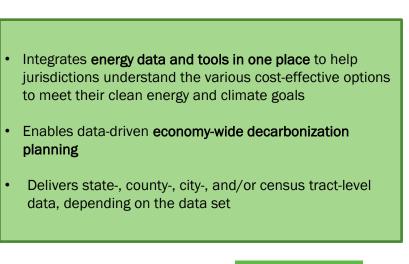
State and Local Planning for Energy (SLOPE) Platform

SLOPE is a free, easy-to-use online platform to support data-driven state and local energy and decarbonization planning.

ιV

Scenario 1: 95% Grid Decarbonization by 2035 & Widespread Electrification

* Non-electric energy demand includes solid, liquid, and gaseous fuels and steam consumed within the buildings,


Fransportation Electricity

Residential Electricity

Commercial Electricity

Industrial Natural Gas

CO2 Emissions - Wayne, Michigan

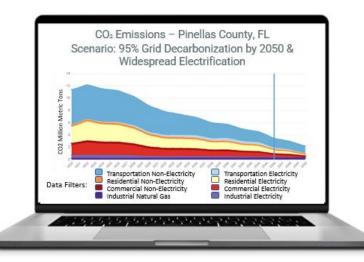
Visit SLOPE: <u>maps.nrel.gov/slope</u>

Data Filters

Transportation Non-Electricity*

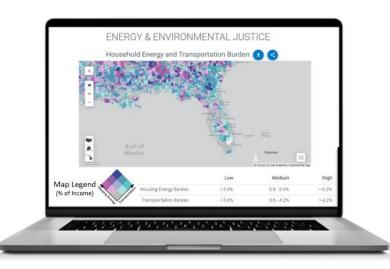
Residential Non-Electricity*

Industrial Electricity


industrial, and transportation sectors

Commercial Non-Electricity*

Two Tools Within SLOPE to Support Planning


Scenario Planner

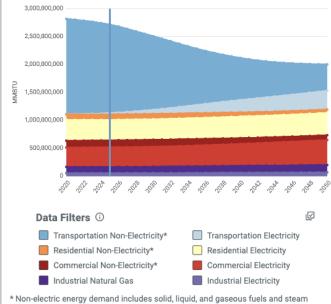
Build, visualize, and compare the impacts of different energy scenarios for your state or county's future energy consumption, CO2 emissions, and system costs. The scenarios available reflect different clean energy strategies like energy efficiency deployment, grid decarbonization, and electrification.

Data Viewer

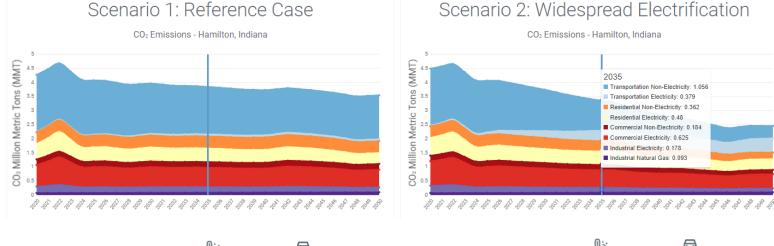
Explore interactive maps and charts of energy efficiency, renewable energy, sustainable transportation, energy equity, energy cost data, and more at the state-, county-, city-, and census tractlevels.

'Scenario Planner' Tool

A ground-breaking planning tool that visualizes scenarios for future energy consumption, CO₂ emissions, and system costs of a selected county or state. Users can select and explore various energy planning pathways in isolation and in combination.


Functionality will allow users to layer the following scenarios to showcase how these scenarios interact:

- Level of Electric Grid Decarbonization
- Presence of Transmission Constraints
- Level of Building Energy Efficiency
- Level of Electrification
- Level of Demand-Side Flexibility


Scenario 1: Widespread Electrification

Energy Consumption - Florida

consumed within the buildings, industrial, and transportation sectors

Example 'Scenario Planner' Application

Data Filters (i)

2035	Ĵ);-	Ţ,
Planning Metrics ⑦ State-level data only	23.01%	47.14%
	Share of Space Heating Services Supplied by Electricity (%)	BEV and PHEV Share of Light- Duty Vehicles (%)

Datasets Available on the Scenario Planner

Projected Outputs (2020-2050)	Description
Energy Consumption	Energy consumption if your jurisdiction were to pursue significant investments in building energy efficiency, electrification, and/or demand-side flexibility (e.g., load shifting).
CO ₂ Emissions	CO ₂ emissions if your jurisdiction were to pursue significant investments in grid decarbonization, building energy efficiency, electrification, and/or demand-side flexibility.
System Costs	Capital and operational costs and savings if your state were to pursue significant investments in grid decarbonization. building energy efficiency electrification, and/or demand-side flexibility.

Data Available in SLOPE's 'Data Viewer' Tool

Energy Consumption*

 Electricity and natural gas consumption and expenditures: projected in a business-as-usual case for the residential, commercial, and industrial sectors through 2050

Transportation

- Current and projected on-road vehicle fuel consumption and vehicle miles traveled
- Current and projected vehicle registration data by fuel type

Energy Efficiency

- Electricity savings potential for residential, commercial, and industrial sectors through 2035
- Electricity and fuel savings potential from cost-effective energy improvements for single-family homes and commercial buildings

Solar

- Utility-scale photovoltaic (PV), floating PV, residential rooftop PV, and commercial rooftop PV technical potential
- Concentrating solar power utility-scale technical potential

Wind

 Land-based, offshore, and distributed wind technical potential

Bioenergy

Biopower technical potential

Geothermal

- Utility-scale geothermal technical potential
- Geothermal district heating economic potential in new construction and existing buildings
- Geothermal heat pump economic potential

Hydropower

- Utility-scale hydro generation potential
- New stream reach and non-powered dam generation
 potential

Generation Scenarios

 Modeled current and projected electricity generation mix through 2050 by state under 12 scenarios

Cost of Energy

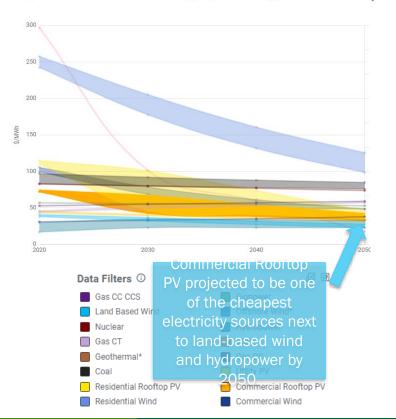
- Levelized cost of energy: projected electricity costs for 16 generation technologies plus battery storage through 2050
- Program administration cost of saved electricity

Demographics*

Ne

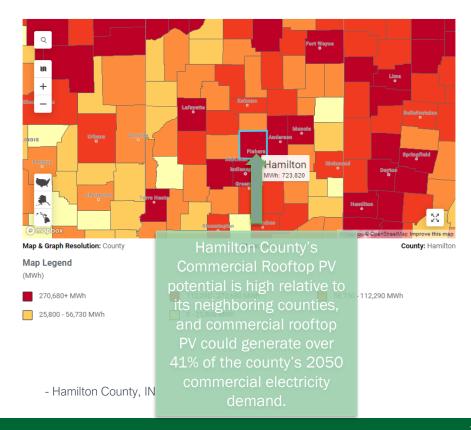
• Population: past and projected population from 2015-2050

Commercial Buildings*

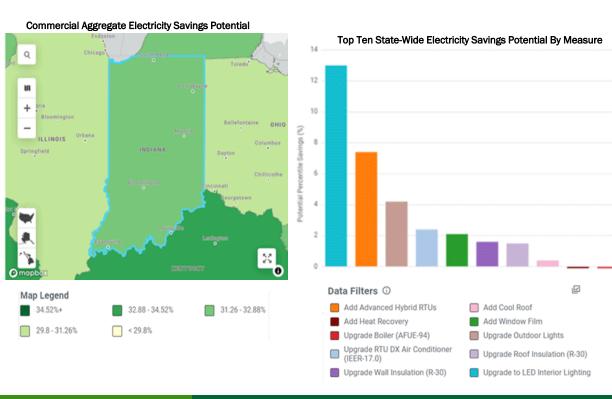

• Commercial building count and area by size and property type for 2020

Energy & Environmental Justice[^]

- Energy burden from housing and transportation energy expenditures
- LMI Energy Efficiency Bill Savings
 Potential
- CDC's Social Vulnerability Index


*City-level data available for ~6,000 cities ^Census-tract level data Other datasets provide state- and/or county-level data

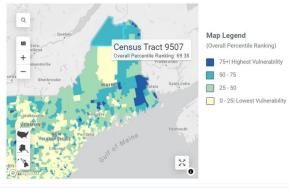
Example 'Data Viewer' Application


Projected Levelized Cost of Energy by Technology - Hamilton County, IN

Modeled Annual Technical Generation Potential - Commercial Rooftop PV

New Energy Efficiency Data

Energy efficiency scenarios enable users to visualize the impacts of "aggressive" energy efficiency improvements.

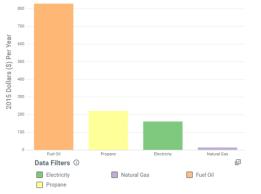

- Allows users to view the projected changes, systems-wide costs, and savings in energy consumption and CO2 emissions if their selected state or county pursues a high level of energy efficiency deployment within their building stock (Scenario Planner)
- Statewide commercial energy efficiency savings potential additions help users understand the total energy savings potential available within their commercial building stock for electricity and natural gas sources (Data Viewer)
- Provides the top ten savings measures within a state such as LED lighting, window films, or boiler upgrades for the residential sector

New Energy and Environmental Justice Data

CDC's Social Vulnerability Index (SVI)

SVI scores census tracts based on their relative social vulnerability. Each score is based on 15 social factors (e.g., unemployment rate, minority status, vehicle access). Users can also view vulnerability scores within certain sub-categories (e.g., socioeconomic status, housing type)

Social Vulnerability Index by Census Tract

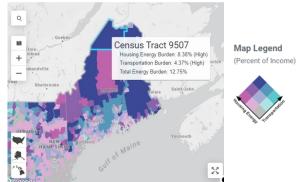


If a jurisdiction wants to target their clean energy programs, policies, or deployment to communities that may benefit the most, they can use SVI as a proxy to identify disadvantaged communities.

LMI Single Family Homes Bill **Savings Potential**

This layer displays the average bill savings (as a percent) that Low-to-Moderate Income (LMI) households would realize if they got an energy efficiency retrofit.

Average Annual Bill Savings Per LMI Single Family Home

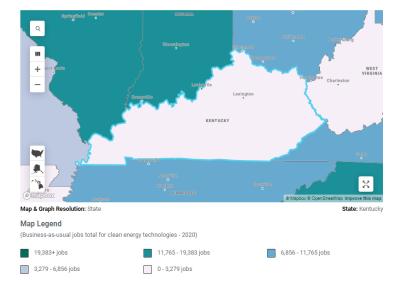


Jurisdictions considering energy efficiency programs or deployment can use SLOPE data to conceptualize the monetary benefits that LMI households would realize if

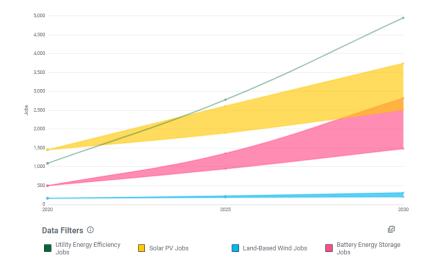
Household Energy and **Transportation Burden**

Energy burden represents the percentage of household income spent on energy costs. SLOPE provides energy burden data on housing energy costs and transportation energy costs.

Household Energy Burden by Census Tract



Energy burden data can be leveraged to help target programs, policies, or deployment that can reduce energy costs to communities that are in greatest need.


U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

New Clean Energy Job Estimates

- The graphs below show a range of potential jobs for four key clean energy technology sectors: solar, wind, battery energy storage (BES), and energy efficiency measures.
- This information was published in a 2022 NREL Report on <u>State-Level Employment Projections for</u> <u>Four Clean Energy Technologies in 2025 and 2030.</u>

Job Estimates for Clean Energy Technologies

Clean Energy Jobs Estimates by Technology - Kentucky

SLOPE Demonstration:

'Scenario Planner' Tool, Building and Efficiency Data, Energy and Environmental Justice Data Standard Energy Efficiency Data (SEED) Platform: How SLOPE Integrates with Other DOE Tools

SEED: Background Understanding

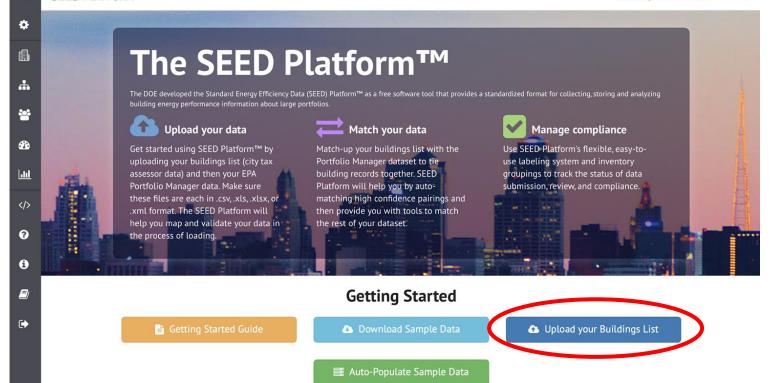
U.S. DEPARTMENT OF ENERGY

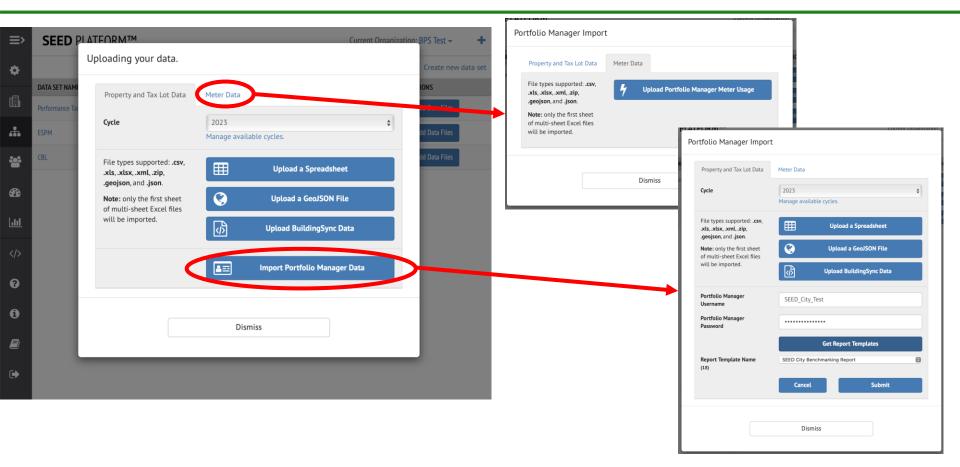
Benefits:

- Portfolio-level & program-level building characteristics and energy data management tool
 - Combines, cleans, validates, and generates reports on data from multiple sources
 - Easy, flexible, and cost-effective method to improve data quality and help manage building-related programs
 - Interconnects with various DOE and external tools (e.g., Salesforce)
- Web-based platform
- Open source and community-driven development focused

Acknowledgments:

Many people have contributed to this work, including:

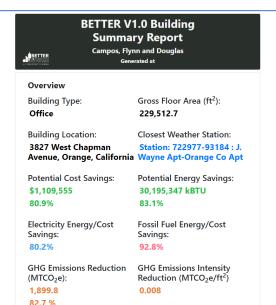

- NREL: Nicholas Long, Alex Swindler, Katherine Fleming, Lauren Adams, Alex Chapin, Hannah Eslinger, Isabel Langlois-Romero
- LBNL: Robin Mitchell, Paul Mathew, Carolyn Szum, Han Li
- PNNL: Mark Borkum, Supriya Goel
- Devetry: Ryo Schultz, Ross Perry, Ted Summer
- Former Project Members: Adrian Lara, Lin Ainsworth, Austin Viveiros, Daniel McQuillen, Sarah Newman


SEED Demonstration: Uploading Data

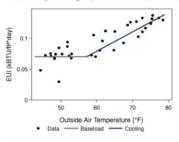
■> SEED PLATFORM™

Current Organization: BPS Test - +

SEED Demonstration: Importing from ESPM



SEED Demonstration: Data Quality

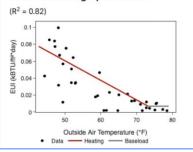

Org	anizations							nrel									
			Settings Sharing Column	Settings Colu	mn Map	pings	Data Q	uality Cycles La	bels Sub	Organizations Mer	nbers Er	nail Templates Derived	Columns				
	ata Quality															Reset All Rules Save	ve Ci
- 0	ata Quality																
	ying Data Quality Rules	es that	you want to: 1) enable/disable within your organization, 2) modi	fy the minimum/r	naximur	m values tr	o valida	ite against on file unlo	ad and 3) or	ntionally assign or remo	we a label i	f the condition is not met					
	All Rules: delete all rules and			ry the minimumpr	aximu	n vatues to	J Vatio	tte against on nite upto	iu, anu 5) op	cionality assign of remi	we a tabet i	r the condition is not met.					
Creat	te a new rule																
View	v by Property 25 View	w by Ta	x Lot 2														
	CONDITION CHECK		FIELD			DATA TYPE		MINIMUM		MAXIMUM		UNITS	SEVE	RITY LEVEL	LABEL		
	Not Null	\$	Address Line 1		\$	Text	\$						¢En	or \$		E	3
۵	Range	\$	Average Annual CO2 (kgCO2e)		0	Number	¢	(no minimum)	٢	1000000	٢		¢ Wa	irning 🗘		High GHG 🗙	
	Range	\$	BETTER Potential Electricity Cost Savings (USD)		¢	Number	¢	(no minimum)	٢	100000	٢		¢ Wa	rning 🛟		BETTER Potential Savings	J
	Range	\$	Conditioned Floor Area (ft ²)		\$	Area	¢	(no minimum)	0	7000000	٥	square feet	¢ En	or \$		E	1
	Range	\$	Conditioned Floor Area (ft ²)		\$	Area	\$	100	0	(no maximum)	٥	square feet	¢ Wa	rning 💠			1
۵	Not Null	\$	County		¢	Text	¢						¢ En	or 🗘		•	3
۵	Not Null	\$	Custom ID 1		¢		\$	(no minimum)	0	(no maximum)	0		¢ En	or 🗘		•	3
	Range	\$	ENERGY STAR Score		¢	Number	¢	(no minimum)	٢	100	0		¢ En	or 🗘		•	2
	Range	\$	ENERGY STAR Score		¢	Number	¢	10	٢	(no maximum)	٢		¢ Wa	rning 🛟		÷	3
۵	Range	\$	Fractional EUI (kBtu/sqft)		0	Number	¢	(no minimum)	0	100	0	kBtu/sq.ft./year	¢ Wa	irning 🛊		High EUI 🗙	Ĩ
	Range	\$	Fractional EUI (kBtu/sqft)		¢	Number	¢	25	٢	(no maximum)	0	k8tu/sq. ft./year	¢ Wa	rning 🛟		Low EUI	ī
۵	Range	\$	Gross Floor Area (ft ²)		¢	Number	¢	100	٢	7000000	٥	square feet	¢ En	or \$		(+	ī
-																	
0	Range	\$	Occupied Floor Area (ft ²)		0	Number	0	100	0	7000000	0	square feet	¢ En	or 🛊		•	1

SEED Demonstration: BETTER Results

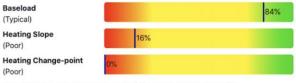
Electricity Model: Your consistent baseload is 0.07 kBTU/(ft²)*day or 25.6 kBTU/(ft²)*vr [Baseload]. The building's energy consumption start to increase as the outside air temperature goes above 57.1 °F [Cooling Change-Point]. Beyond the cooling change-point, the daily energy consumption increases by 115 (kBTU) when outdoor air temperature increases by 1 °F [Cooling Sensitivity].

Electricity Change-point Model (R² = 0.83)

Electricity Consumption Benchmarking


Note: % indicates the percentage of buildings your building is superior to.

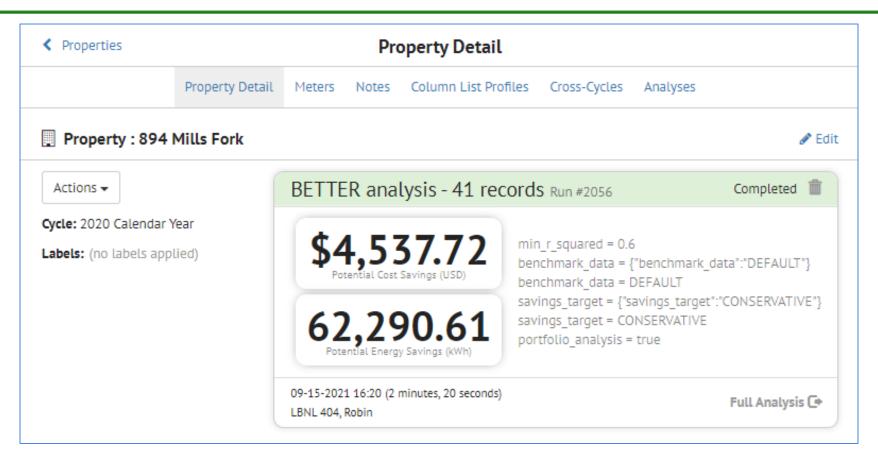
Fossil Fuel Model: Your consistent baseload is 0.007 kBTU/(ft²)*day , or 2.6 kBTU/(ft²)*yr , [Baseload]. The building's energy consumption start to increase as the outside air temperature goes below 73.2 °F [Heating Change-Point]. Below the heating change-point, the daily energy consumption increases by 84.5 (kBTU) when outdoor air temperature decreases by 1 °F [Heating Sensitivity].


(Poor)

(Poor)

Fossil Fuel Change-point Model

Fossil Fuel Consumption Benchmarking



Note: % indicates the percentage of buildings your building is superior to.

SEED Demonstration: BETTER Results

2									Prope	rties				
								Properties List	Column List Profiles Re	ports Cross-Cycles	Map Summary			
	Actio	ons •	•	Fil	lter by	labe	Add a label				AND OR EXCLUDE	Clear Labels	Clear Filters	
9	ycle:		20	20 C	alend	ar Yea	ır 🗸				Column	List Profile: BETTER	ESPM Property Flelc 🗸	BETTE Result
	Viev	<i>и</i> by	Prop	perty		Viev	v by Tax Lot						40 properties	
0	~					ø	PM Property ID	Property Name	Address Line 1 V	City	✓ BETTER Potential Cost ∴.	BETTER Potential Ener	BETTER Potential GHG 🛛 🗄	
F					6		17145817	Allison-Webb	894 Mills Fork	Manteca	4537.72	62290.61	12254.92	
					0		53122797	Anthony, Cabrera and	24632 Gregory Vista	Susanville	67027.96	923393.58	181584.84	
Ľ					0		66670865	Bender-Johnson	945 Lynch Ramp Suite	Crescent City	47627.69	386751.78	98673.4	
					0		62521116	Brown-Savage	089 Rogers Crossroad	El Monte	166984.02	1649788.02	340563.16	
					0		21283284	Byrd-Mejia	733 Daniel Common	Stockton	291634.9	2563610.4	540187.35	
					0		82965112	Campos, Flynn and Do	3827 West Chapman A	Orange	1109555.86	8849382.83	1899820.15	
					0		58891421	Carter LLC	49858 Janice Plaza Apt	San Jose	137291.47	1366976.93	281818.18	
					0		98976218	Chapman, Gonzalez an	2064 West Columbia W	Hanford	280080.96	3772061.3	743916.27	
					0		66378228	Cline Inc	108 Phillip Hollow	Los Angeles	392192.62	3490937.88	733902.13	
					0		45506420	Collins, Hall and Brown	224 Mary Skyway Suite	Yuba City	97860.08	965554.09	199362.61	
					0		95595481	Davis-Mccall	8764 Alexander Pass S	Long Beach	523095.96	4312678.86	920017.62	
					0		4277132	Davis-Smith	6243 Robin Spring Apt	Martinez	2017.11	46079.54	13408.35	
					0		84613073	Floyd PLC	806 Brad Junction	Riverside	23307.26	263000.09	53159.17	

SEED Demonstration: BETTER Results

Map Analysis & Justice40 Tracking

⇒ SEED PLATFORM™	Current Organization: nrel -
0	Properties
Properties List	ist Properties List (beta) Column List Profiles Reports Cross-Cycles Map
Actions - Fitter by label: Add a label Cycle: BETTER 2021	AND OR EXCLUDE Clear Labels Total Site EUI (kBtu/ft2) 20 - +750
View by Property View by Tax Lot	🗍 174 propertie
Hexagonal Bins Di Building Points Di UBID Centroldi ULID Centro	ngeles San Gabriel Oak merce East La Mirada Anaheim Villa Park

How States and Local Governments Are Using SLOPE

How States and Local Governments Are Using SLOPE

Milwaukee, Wisconsin

- Identify the sectors with the biggest impact on reducing costs and emissions
- Determine what renewable technologies are most cost-effective over time
- Assess how much of Milwaukee's energy consumption could be met by locally generated renewable energy

New Mexico

- Determine potential for local, distributed generation and energy efficiency to meet NM's energy needs
- Identify technologies that can help support energy affordability
- Assess impacts that vehicle electrification will have on electricity demand and how NM can prepare for this transition

Sarasota, Fiorida

- Set incremental targets to reach ambitious greenhouse gas emissions reduction goals
- Assess the impacts of electrification on their building and transportation sectors' energy consumption and CO₂ emissions
- Ensure that LMI communities have access to electric vehicle charging infrastructure

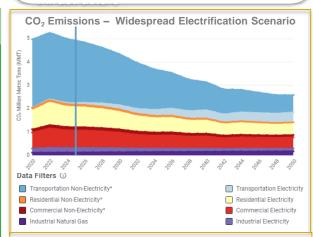


Figure 3: CO₂ Emissions Under a Widespread Electrification Scenario in Sarasota, FL 2020-2050 (SLOPE 2022)

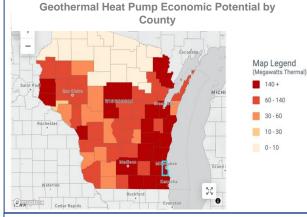


Figure 1: Geothermal heat pump economic potential by county in Wisconsin in 2020 (SLOPE 2021)

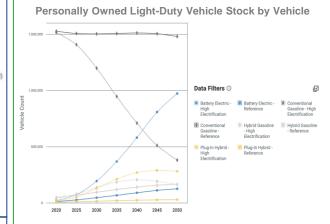
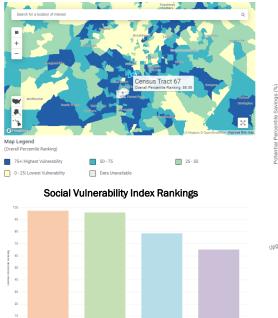
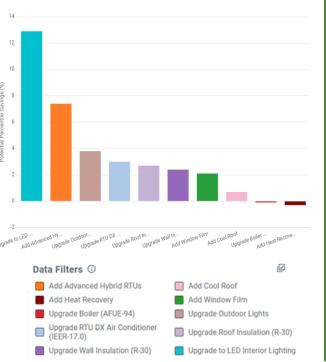



Figure 2: Personally owned light-duty vehicle stock in New Mexico 2020-2050 (SLOPE 2021)

Case Study – Atlanta Regional Commission

Atlanta Regional Commission (ARC) is using SLOPE to inform and integrate equity considerations into planning surrounding its transition to electric vehicles (EVs)


Overall Social Vulnerability Index

Data Filters ①

Socioeconom

Top Ten State-Wide Electricity Savings Potential By Measure

SLOPE Helped Atlanta Regional Commission:

- Understand multifamily housing and opportunities to co-locate charging infrastructure while ensuring equitable access.
- Explore opportunities to help the region reach carbon reduction milestones.
- Explore possible rates of adoption of electric vehicles (EVs) while considering the transportation burden of underserved populations.

Minority Status

Types of Questions SLOPE Can Answer

Consumption

What sectors (e.g., commercial, industrial, residential) should my city focus on to have the biggest impact on reducing GHG emissions?

Efficiency

What is the energy efficiency savings potential in my jurisdiction and what are the most cost-effective savings measures in my state?

System Costs and CO₂ Emissions

How do the system cost and emission impacts of various energy strategies compare?

Buildings

How many commercial buildings over 20,000 ft² are in my city and what is the total square footage broken down by property type?

Renewables

How much of my county's energy consumption can be met by locally generated renewable energy?

Sustainable Transportation

How might the number of EV, conventional gasoline, hybrid gasoline, and PHEV personal vehicles change in the future?

Cost of Energy

How do the costs of utility-scale and distributed renewables, fossil fuels, energy storage, and efficiency compare in my jurisdiction?

Decarbonization Planning

How can various energy strategies help my community achieve its decarbonization goals?

Defining SLOPE in the Era of BIL

SLOPE can play an integral role in the pre-implementation stage of deployment.

In the era of the Bipartisan Infrastructure Legislation, SLOPE fills the role of identifying high-impact technologies, sectors, and communities to help prioritize investments and planning strategies that present the greatest opportunities to reduce emissions, costs, and consumption. SLOPE allows for the creation of customized maps, charts, and scenario models that can be easily shared with key decision makers while integrating over 25 leading data sources. Scenario 1: 95% Grid Decarbo Barriers & Widespread Electr

Change in System Costs Relative to

Net System Cost 🛈

Office of State & Community Energy Programs

SLOPE can be leveraged to explore priority data sets for BIL grantees.

The new Office of State & Community Energy Programs (SCEP) presents an opportunity to work with communities to understand their needs and the types of data and analysis that can support them with implementation. SLOPE has the capability to support decarbonization, renewable energy integration, electrification applications, and energy planning both locally and state-wide.

How Can SLOPE Help Your Jurisdiction?

- Saves you time and resources by providing a free, web-based tool to support your energy planning
- Identifies high-impact technologies, sectors, and communities to help you prioritize investments and planning strategies that present the greatest opportunities to reduce emissions, costs, and consumption
- Offers additional tools and resources you can leverage in developing policies and programs to meet your energy and climate goals

Check Out Our "SLOPE Stories"

https://maps.nrel.gov/slope/stories

SLOPE Informs Climate and Equity Planning in Milwaukee, Wisconsin

SLOPE Informs Grid Modernization and Transportation Planning in New Mexico

(Coming Soon!) SLOPE Informs Equitable Transition to Electric Vehicle Infrastructure in the Atlanta Metropolitan Area If you have used SLOPE and are willing to share your experiences with our team OR if you think your jurisdiction would benefit from additional outreach or assistance:

please enter your email in the chat or reach out to us at slope@nrel.gov so we can follow-up and learn more.

Questions?

Thank you for your interest in SLOPE!

Shannon Zaret U.S. Department of Energy shannon.zaret@ee.doe.gov

Additional Questions?

Contact Us at slope@nrel.gov

Katie Richardson National Renewable Energy Laboratory katie.richardson@nrel.gov

Visit SLOPE at <u>maps.nrel.gov/slope</u> And check out SLOPE's new energy and environmental justice data!

Rachel Scroggins U.S. Department of Energy rachel.scroggins@ee.doe.gov

Upcoming MEEA Events

2023 MIDWEST S NFERENCE

Early Bird Registration Now Open!

January 31 - February 2, 2023 Chicago, IL www.meeaconference.org

