Regenerative Design: A Bridge between Sustainability and Resilience

Weeks after Tesla founder Elon Musk and Gov. Ricardo Rossello spoke about the tech company aiding Puerto Rico, Tesla says it has restored electricity to a children's hospital, using solar energy and batteries.

Tesla

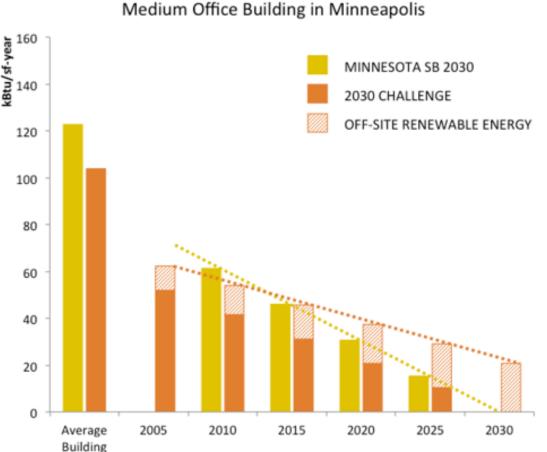
University of Minnesota

Richard Graves, Center for Sustainable Building Research

College of Design, University of Minnesota

Sustainable Building 2030

MINNESOTA SB 2030


Goal of net-zero energy Average building:

- Based on the ASHRAE 1989 90.:
 Energy Code
- Calculated with the SB 2030 Energy Standard Tool

2030 CHALLENGE

Goal of carbon neutrality Average building:

- Based on existing building energy use (CBECS 2003 data)
- Calculated with the EPA Target Finder

NET SITE ENERGY TARGETS

MINNESOTA SUSTAINABLE BUILDING 2030

CASE STUDY METRICS - www.casestudies.b3mn.org

Bear Head Lake State Park

Hennepin County 911 Facility

BSU Decker Hall Renovation

MnSCU Mankato Clinical Sciences Building

Hamline Station

Tettegouche Visitor Center and Rest Area

Western U Plaza

Kendall's Payne Avenue Hardware

Big Bog State Recreation Area

Minnesota National Guard Winona Armory Renovation

Camp Ripley COE Training Facility

Duluth Entertainment and Convention Center

NHCC Biosciences and Health Careers Center

Duluth Armory

Silver Creek Corner

NCC Academic Partnership Center

Maplewood Mall Parking Structure

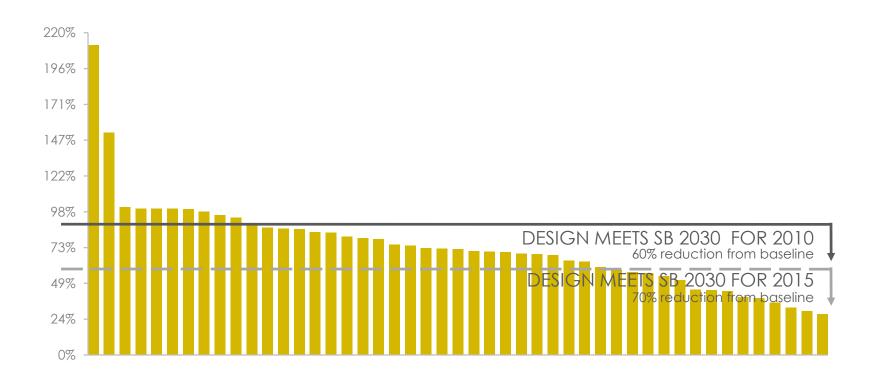
SCC Classroom Renovation and Addition

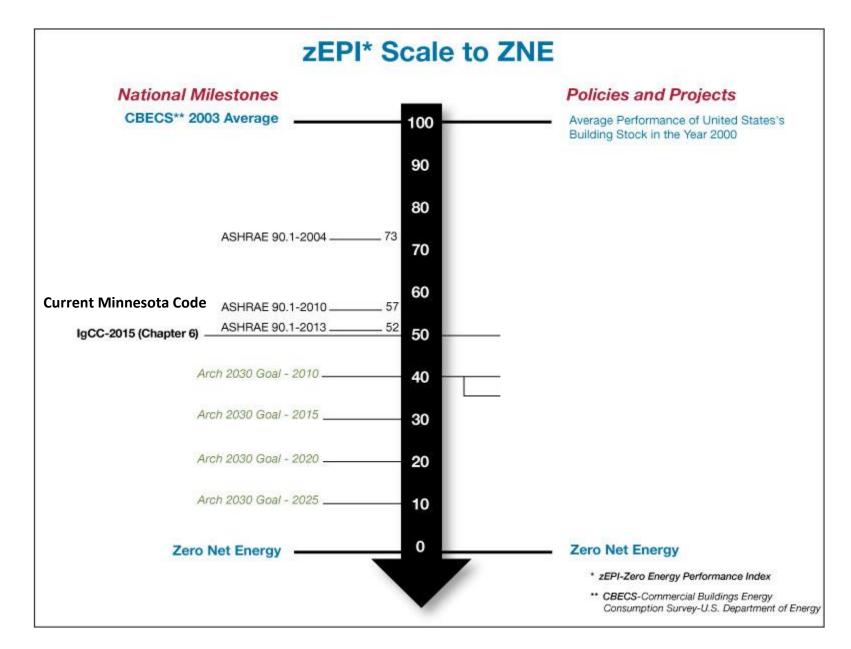
PTC Entrepreneurship Center and Business Incubator

Washburn Center for Children

STCC Medium Heavy Truck and Auto Body

UMM Green Living and





Results – Energy (design/SB 2030 standard)

College of Design UNIVERSITY OF MINNESOTA

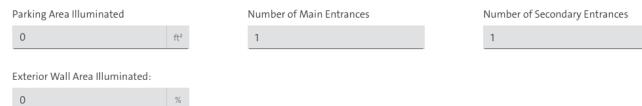
College of Design UNIVERSITY OF MINNESOTA

IGCC

TABLE 612.1 REFERENCE ANNUAL ENERGY USE INDEX (EUIr)

CLIMATE ZONE	44	24	20	24	20	20	4.0	AD	40	EA	E	ł	CA	гđ	-	7	0
CLIMATE ZONE	IA	2A	ZB	3A							_		0A	9	۴.	1	8
Use and Occupancy ^a					Re	efere	nce	EUI	skB	tu/sf	/yr	I					
			1	Busi	nes	s (B)	<u>(</u>	_		_	_	Í					_
Office	154	159	154	151	140	137	167	144	152	179	15	Б	190	1	6	208	282
Bank	154	159	154	151	140	137	167	144	152	179	15	Б	190	1	6	208	282
Medical office (non- diagnostic)	115	118	115	113	104	102	125	108	114	134	11	ô	148	1	1	156	210
	0.0	5.5 C		Stora	age	S-2))		• •		-	ţ				<u> </u>	
Distribution/Shipping Center	105	67	69	66	64	55	75	70	66	87	81		104	9		119	186
			N	lerc	antil	e (M)					ł	с.				V
Grocery/Food Store	448	476	452	484	450	473	522	479	514	554	51	I	592	5	1	633	758
					mbl							ł					
Library (A-3)	234	232	224	230	217	209	254	228	235	275	24	6	304	2	7	327	434
			E	duca	ation	al (E	E)					ł					
Elementary/Middle School	140	139	134	134	128	124	149	132	132	160	14	l	182	1	1	193	274
					tion							t					
Hospital/Inpatient Healt	h 417	422	397	408	388	407	425	366	398	425	37	ļ	439	3	4	446	532
			-		-						-	L					-

a. Use and occupancy as determined by Chapter 3 of the International Building Code.


Figure 4 – EUI Reference Table from IGCC 2015

First, define the building's parameters

Building Definition) Unlock						
Building Type		Gross Building SF		_		Location	
Office		176,865		ft²		Minneapolis	
Space Asset Areas	+ Add Area	Scale All To Fit	t 🔲 🖽 Sumi	mary			
Retail 1		⊕ ≡	Office				⊕ ≡
Type: Retail	Area: 26,865 ft² (15%) 💌	Type: Offic	ce		Area: 150,000 ft² (85%)	
Floors: 1	Arrangement: Sta	cked	Floors: 5			Arrangement: Stacked	
Construction Type: New			Constructio	on Type: New	/		
	Edit					Edit	


Exterior Lighting

%

Energy Standard (kBtu/ft²/yr)

0

Target (based on 70% reduction)	51
Carbon Dioxide (Ibs CO2/ft²/yr)	

Annual SB 2030

Target (based on 70% reduction) 15

Building

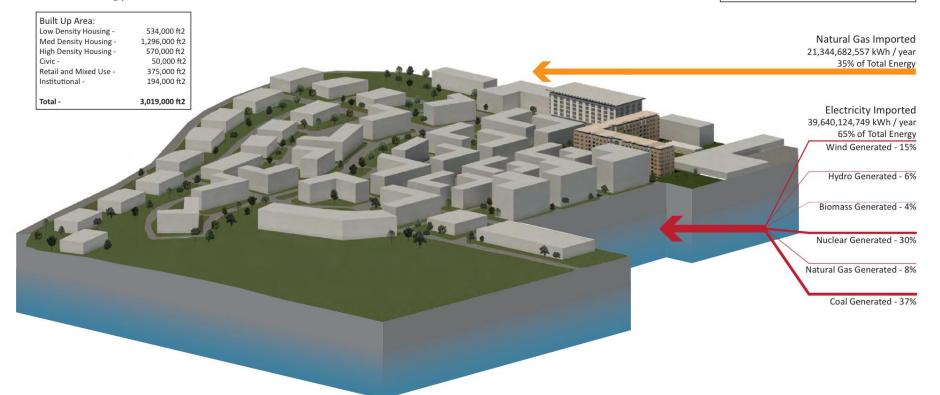
Project Name	DLI
Building Type	Office
Gross Building SF	176,865

Organization	CSBR
Location M	inneapolis

51 Target 90

Space Asset Areas

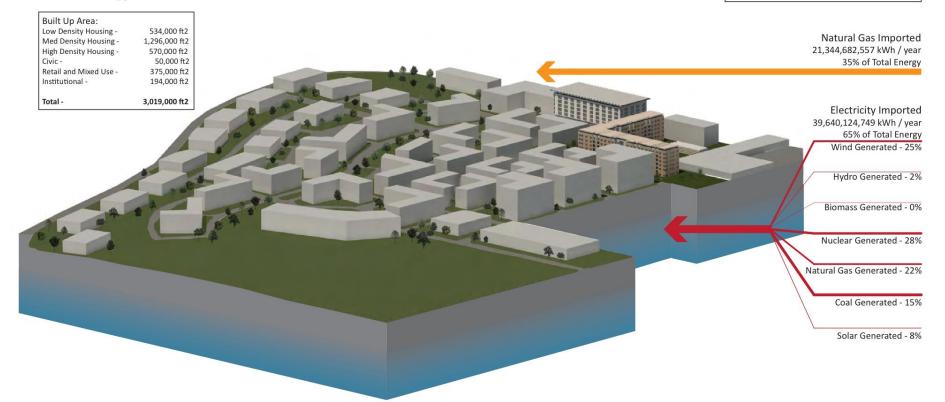
Retail 1	Office
Type: Retail	Type: Office
Area: 26,865 ft² (15%)	Area: 150,000 ft² (85%)
Floors: 1	Floors: 4
Arrangement: Hosted	Arrangement: Adjacent
Construction Type: New	Construction Type: Renovated
Cooling: Not District	Cooling: Not District
Heating: Not District	Heating: Not District


Exterior Lighting

Parking Area Illuminated	0
Number of Secondary Entrances	0

Number of Main Entrances	0
Exterior Wall Area Illuminated	0

Code-Based Buildings - ASHRAE 90.1 2010 2015 Energy Grid


Total Energy Use: 60,984 MWh / year

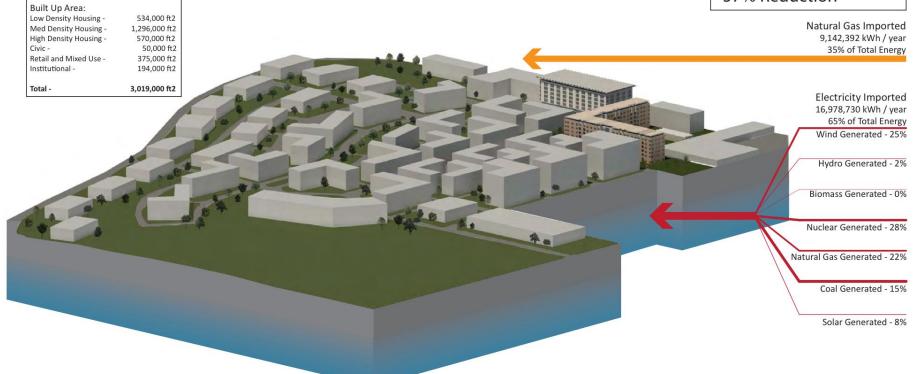
Code-Based Buildings - ASHRAE 90.1 2010 2030 Energy Grid

Total Energy Use: 60,984 MWh / year

Estimated Site Energy Utilization Intensity (EUI) for different new building types in climate zone 6A (St. Paul) using different energ

COMPARATIVE SITE EUI

kBtu/ft²/yr		Code								1	\square	1
Code Building Type	Prototype Floor Area (sf)	ASHRAE 90.1-2004	2012 IECC / ASHRAE 90.1-2010	2015 IECC / ASHRAE 90.1-2013	SB 2030 (2010) -60%	SB 2030 (2015) -70%	SB 2030 (2020) -80%	SB 2030 (2025) -90%	German Passive House System	Danish Building Code BR 2010	Danish Building Code Class 2015	Danish Building Code Class 2020
Small office	5,502	53.7	41.8	37.2	63.0	47.3	31.5	15.8	14.3	37.1	25.8	18.7
Medium office	53,628	62.2	46.2	42.8	62.0	46.5	31.0	15.5	14.3	36.1	25.2	18.7
Large office	498,588	99.7	84.8	83.5	60.0	45.0	30.0	15.0	14.3	36.1	25.1	18.7
Stand-alone retail	24,692	107.2	71.9	61.9	59.0	44.3	29.5	14.8	14.3	36.3	25.2	18.7
Strip mall retail	22,500	118.3	85.4	77.9	60.0	45.0	30.0	15.0	14.3	36.3	25.3	18.7
Supermarket	n/a	208.0	145.0	128.7	119.0	89.3	59.5	29.8	14.3	36.0	25.1	18.7
Primary school	73,959	100.1	75.1	67.8	70.0	52.5	35.0	17.5	14.3	36.1	25.1	18.7
Secondary school	210,887	98.4	64.7	56.2	60.0	45.0	30.0	15.0	14.3	36.1	25.1	18.7
Hospital	241,501	179.9	138.5	130.5	79.0	59.3	39.5	19.8	14.3	36.1	25.1	18.7
Outpatient health care	40,946	161.5	123.3	118.8	52.0	39.0	26.0	13.0	14.3	36.2	25.2	18.7
Full-service restaurant	5,502	570.2	470.9	450.8	90.0	67.5	45.0	22.5	14.3	37.1	25.8	18.7
Quick-service restaurant	2,501	781.9	723.0	689.6	98.0	73.5	49.0	24.5	14.3	38.3	26.6	18.7
Small hotel	43,202	87.4	75.8	71.5	50.0	37.5	25.0	12.5	14.3	28.5	19.6	15.0
Large hotel	122,120	151.8	119.1	109.4	63.0	47.3	31.5	15.8	14.3	28.5	19.5	15.0
Warehouse	52,045	35.3	25.2	23.6	42.0	31.5	21.0	10.5	14.3	36.2	25.2	18.7
Mid-rise apartment	33,741	68.0	60.4	57.3	82.0	61.5	41.0	20.5	14.3	28.6	19.6	15.0
High-rise apartment	84,360	72.1	65.8	61.2	88.0	66.0	44.0	22.0	14.3	28.5	19.5	15.0


© 2010-2014 Krifcon Engineering PC

Current MN Energy

SB2030 80% Better Buildings 2030 Energy Grid

Total Energy Use: 26,121 MWh / year 57% Reduction

OFFICE PROTOTYPE

IMPROVED CASE - BY THE NUMBERS

Office and Retail

BUILDING DETAILS

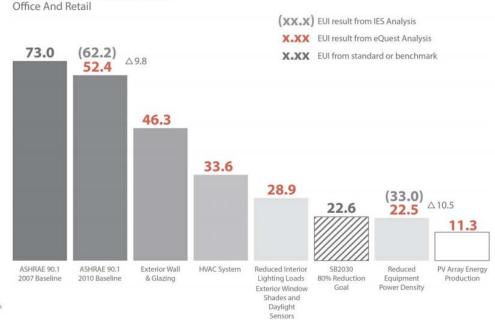
176,865 Total SF 26,865 Retail SF on 1st Floor 30,000 Office SF on 2nd-6th Floor 30,000 Roof SF

ENERGY PERFORMANCE

22.5 kBtu/sf/yr EUI 610,837 kW Photovoltaic Array

WATER USE

72% of Potable Water Demand met by Rainfall6.3 Gallon Demand per Person per Day

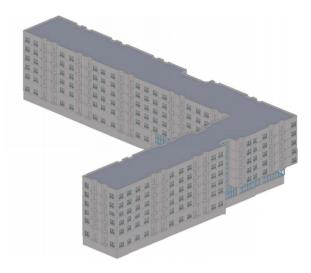

VALUE

\$000 / SF Baseline \$000 / SF Net Zero Energy \$000 / SF Net Zero Water \$000 / SF Living Building Challenge

MAJOR DESIGN STRATEGIES

88% Potable Water Demand Reduction Rainwater capture & Greywater reuse Increased R Values for Walls & Roof Improved Glazing Performance Improved HVAC system and efficiency Lighting Power Densities reduced 50% Equipment Power Density Reduced 40%

IMPROVED CASE - ENERGY USE


EUI = Energy Use Intensity measured in kBtu/sf/yr

RESIDENTIAL PROTOTYPE

IMPROVED CASE - BY THE NUMBERS

Multi Family and Retail

BUILDING DETAILS 219,096 Total SF 7,658 Retail SF on 1st Floor

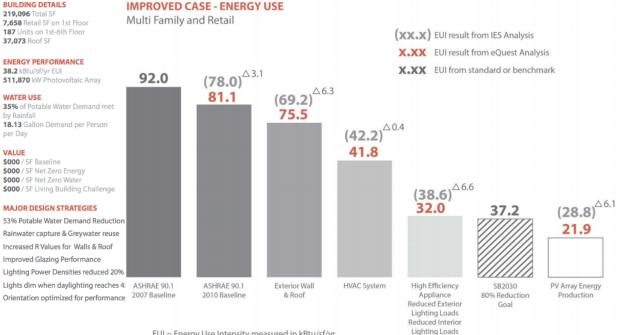
187 Units on 1st-6th Floor 37,073 Roof SF

ENERGY PERFORMANCE

38.2 kBtu/sf/yr EUI 511,870 kW Photovoltaic Array

WATER USE

35% of Potable Water Demand met by Rainfall 18.13 Gallon Demand per Person per Day


VALUE

\$000 / SF Baseline \$000 / SF Net Zero Energy \$000 / SF Net Zero Water \$000 / SF Living Building Challenge

MAJOR DESIGN STRATEGIES

53% Potable Water Demand Reduction Rainwater capture & Greywater reuse Increased R Values for Walls & Roof Improved Glazing Performance Lighting Power Densities reduced 20%

Orientation optimized for performance

EUI = Energy Use Intensity measured in kBtu/sf/yr

MID-RISE APARTMENT BUILDING PROTOTYPE | PHIUS - WUFI PASSIVE

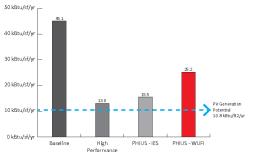


Figure 1: Mid-rise Apartment Prototype Energy Modeling Comparison. The prototype was modeled in IES (in grey) and PHIUS - WUFI Passive (red) software. WUFI Passive outcomes show a more conservative estimate of energy use intensity 25.2 compared to 15.5.

PASSIVEHOUSE REQUIREMENTS

Figure 2: Passive House Performance Requirements. The project as modeled meets six of the seven WUIFI Passive house performance thresholds. The exception being Primary Energy, which the project exceeds by 8%. However, the project does very well on space conditioning on both the load and demand criteria. Onsite renewables generate 10.8 kBtu/sf/yr (Figure 5) compared to the WUFI Passive modeling predicted EU is 25.2 kBtu/sf/yr a 60% shortfall.

PROJECT INFORMATION Mid-Rise Prototype 41 Units: 2, 3 BR 135 Residents 11.7 DHW gpd/person@140F 19.9 cfm/person continuous ventilation (0.3 ACH)

Area Conditioned Floor Area (iCFA) 53,340 ft2 Roof: 14,093 ft2 Exterior Wall: 18,507 ft2 Window & glass doors: 6,741 ft2 Opaque Doors: 0 ft2 Window to Wall ratio: 36.4% Surface area/volume ratio: 0.09

Location and Climate Minneapolis, Minnesota Climate Zone 6 HDD: 8217 CDD: 831

SPECIFICATIONS Passive House Equipment Variable Refrigerant Flow (VRF) Heating COP: 2.5 Cooling COP: 5 Ventilation: 80% SRE heat recovery and 0.7 W/cfm Lighting Power Density: 0.05 - 0.6 W/ft2 Equipment Power Density: 0.0 - 1.11 W/ft2 Nat. Gas Storage Water Heater: 480e, 0.95EF

Passive House Envelope Roof: R-96 Wall: R-45 Floor slab: R-16 Whole-window U-0.21, SHGC-0.25 Curtainwall U-0.33 SHGC-0.25 Infiltration: 0.05 cfm50/sf (0.30 ACH50)

MID-RISE APARTMENT BUILDING PROTOTYPE | PHIUS- IES

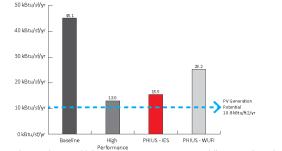


Figure 3: Figure 1: Mid-rise Apartment Prototype Energy Modeling Comparison. The prototype was modeled in IES and PHIUS - WUFI Passive software. This was done by adapting the WUFI Passive model inputs for IES. The PHUIS compliant IES model show above in red has a predicted EUI of 15.5 kBtu/sf/yr, compared to 25.2 kBtu/sf/yr from the WUFI Passive model. The discrepancy between modeling is likely due in part, to how each project calculates equipment efficiencies. In addition, IES does not estimate air-tightness and ACH in a readily verifiable manner.

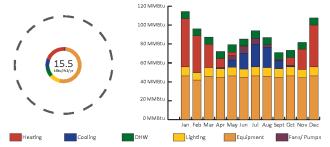
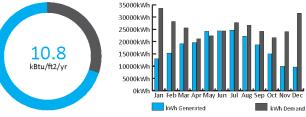



Figure 4: EUI and Energy Load Distribution. Major reduction in heating and cooling loads result in the primary loads of the high performance building shifting to equipment and plug loads associated with in unit end uses.

PROJECT INFORMATION

Mid-Rise Prototype 52 Units, 2, 3BR 170 Residents 11.7 DHW gpd/person@140F 17.5 cfm/person, continuous ventilation

Area

Floor: 67,845 ft2 Roof: 13,673 ft2 Exterior Wall: 27,637 ft2 Opening: 7,698 ft2 WWR: 27.8 Surface Area / Volume Ratio: 0.07

Location and Climate

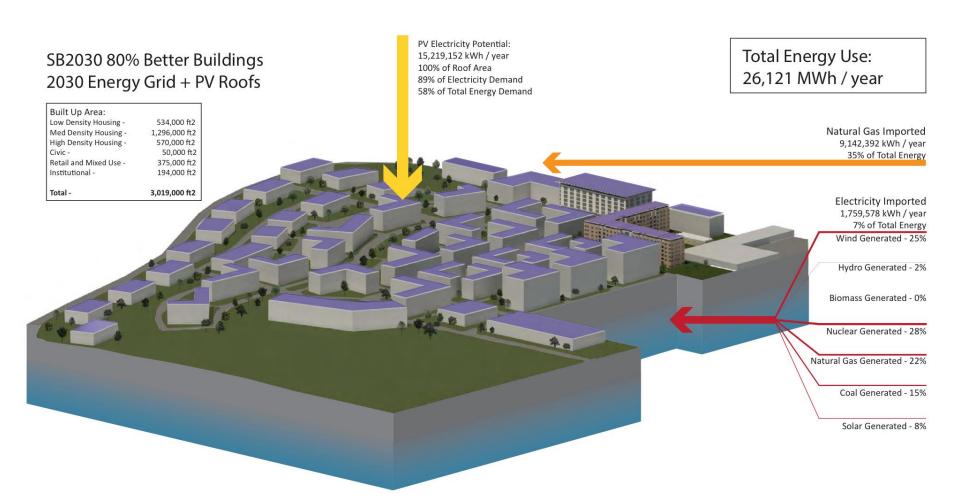
Minneapolis, Minnesota Climate Zone 6 HDD: 8217 CDD: 831

SPECIFICATIONS

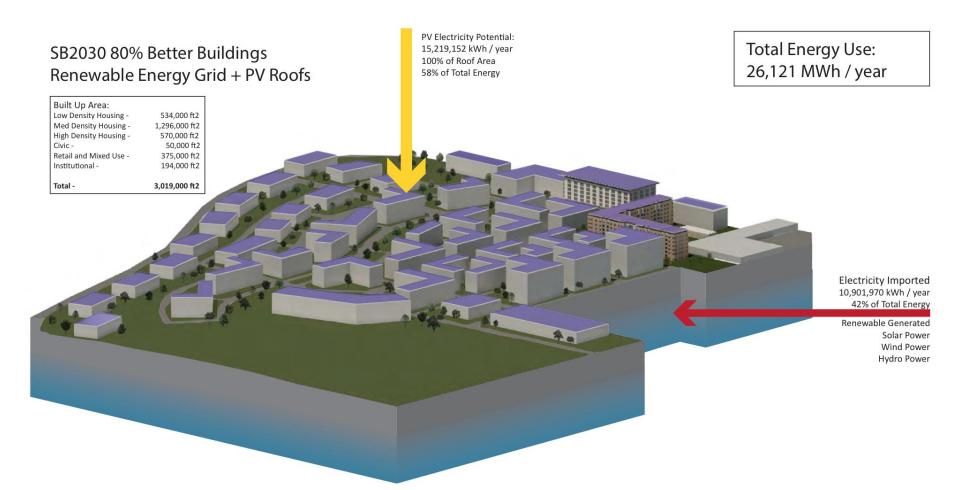
Passive House Equipment VRF System Heating CoP: 2.5 Cooling CoP: 5 Natural Gas Hot Water Heater, 0.95 EF, 480.0 Gal Storage 80% Efficient Energy Recovery Lighting Power Density: 0.05 - 0.60 w/ft2 Equipment Power Density: 0.0 - 1.11 w/ft2

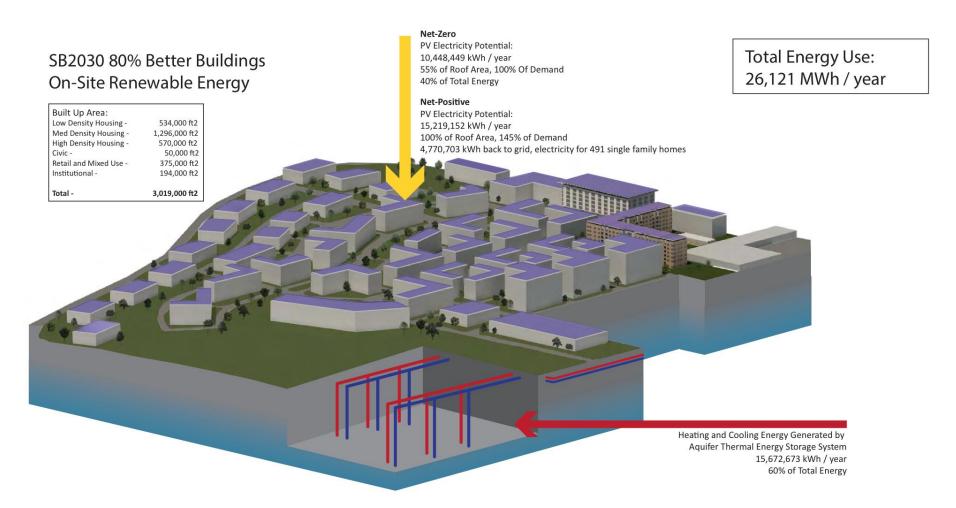
Passive House Envelope Roof: R-96 Wall: R-46 Glazing: Whole Window U-0.241, SHGC 0.4 Slab: R-16 Infiltration: 0.3 ACH50

Figure 5: Renewable Energy Generation. Onsite renewables generate 10.8 kBtu/sf/yr compared to the IES modeled energy use intensity of 15.5 kBtu/sf/yr, resulting in an energy deficit of 30% (IES).

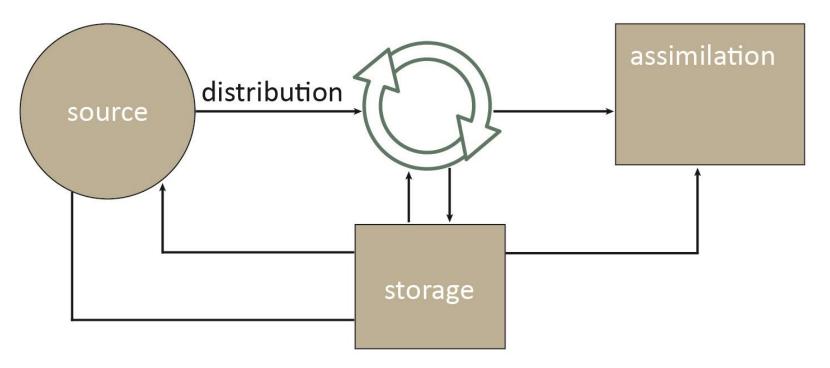

Minnesota Sustainable Housing Initiative

Multi-Family Housing High Performance Prototypes


© 2017 Regents of the University of Minnesota, Center For Sustainable Building Research


College of Design UNIVERSITY OF MINNESOTA

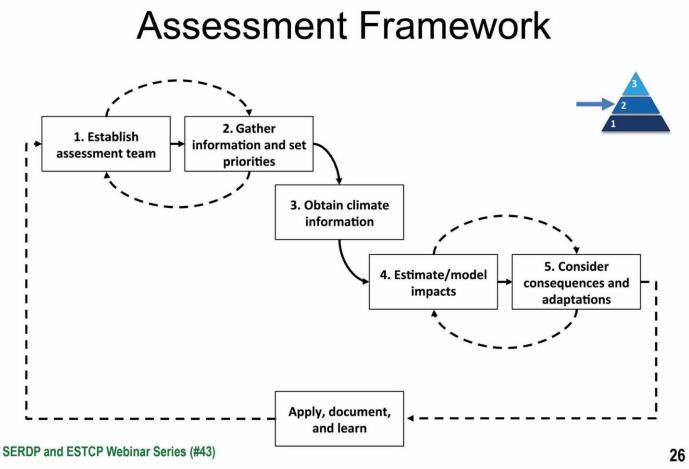
Existing Throughput Systems



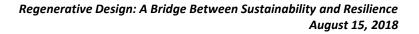
• Efficiency as end goal • Degenerative linear flows

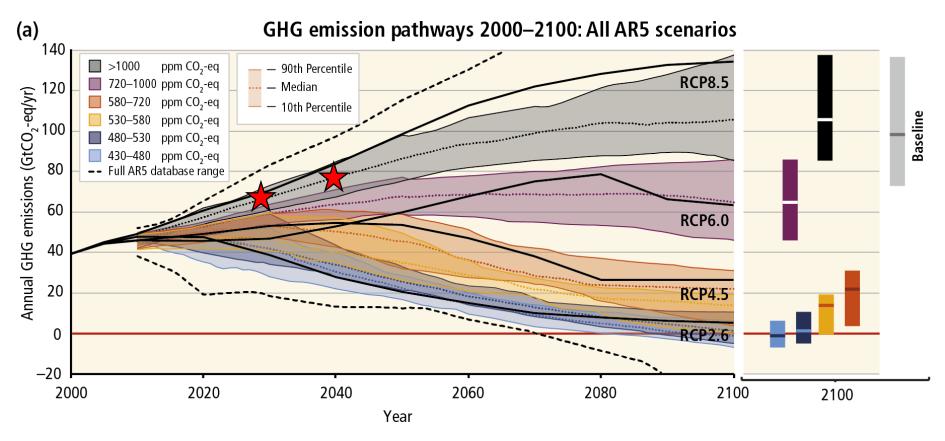
John Tillman Lyle, Regenerative Design for Sustainable Development, 1994

Regenerative Systems


- Effectiveness as end goal
- Within renewal capacity
- Integrate with natural processes
- Symbiosis
- Closed-loop system
- Multiple pathways

John Tillman Lyle, Regenerative Design for Sustainable Development, 1994


Vulnerability Assessment Framework



SERDP and ESTCP Webinar Series, Vulnerability Assessments and Resilience Planning at Federal Sites, 2016 Strategic Environmental Research and Development Program (SERDP)

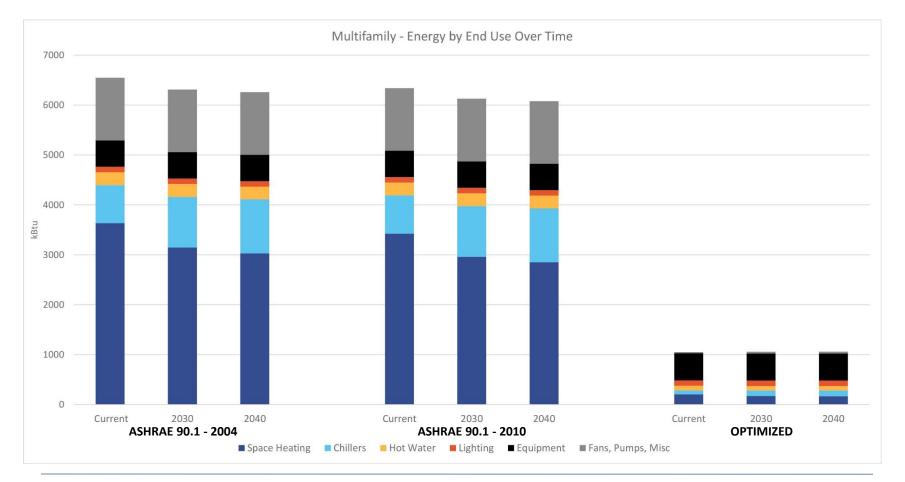
Environmental Security Technology Certification Program (ESTCP)

Intergovernmental Panel on Climate Change, Fifth Assessment Report. 2014

- Morphed weather files for the Minneapolis / Saint Paul Area
- Future performance analyzed using RCP 8.5, 50th percentile

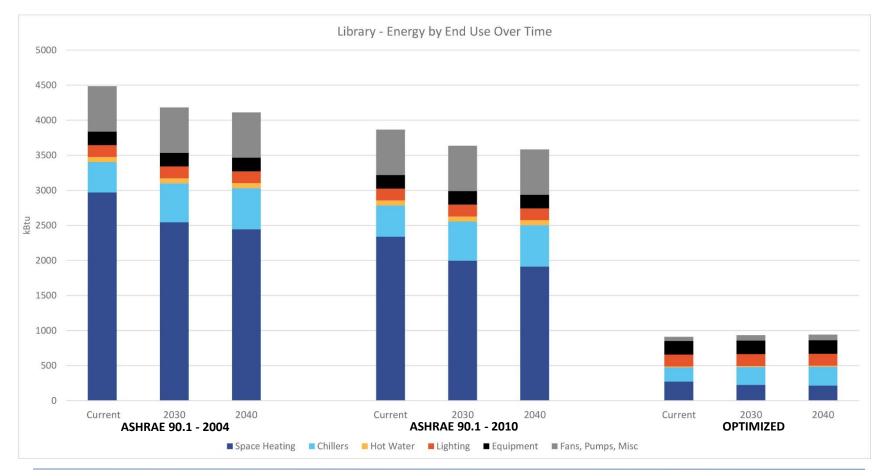
Strategy		Hours: Actual and Percentage							
	N	Now 203)30	204	40			
Comfort	942	11%	885	10%	936	11%			
Sun Shading of Windows	586	7%	778	9%	817	9%			
High Thermal Mass	154	2%	217	2%	240	3%			
High Thermal Mass Night Flushed	154	2%	228	3%	256	3%			
Direct Evaporative Cooling	109	1%	179	2%	198	2%			
Two-Stage Evaporative Cooling	111	1%	192	2%	216	2%			
Natural Ventilation Cooling	104	1%	162	2%	170	2%			
Fan-Forced Ventilation Cooling	72	1%	104	1%	106	1%			
Internal Heat Gain	1589	18%	1353	15%	1361	16%			
Passive Solar Direct Gain Low Mass	899	10%	826	9%	796	9%			
Passive Solar Direct Gain High Mass	624	7%	559	6%	539	6%			
Wind Protection of Outdoor Spaces	259	3%	254	3%	249	3%			
Humidification Only	0	0%	0	0%	0	0%			
Dehumidification Only	491	6%	659	8%	692	8%			
Cooling, add dehumidification if needed	305	3%	549	6%	604	7%			
Heating, add humidification if needed	4791	55%	4545	52%	4436	51%			

Predicted Effectiveness of Comfort Strategies for Minneapolis / Saint Paul – Climate Consultant, UCLA Energy Design Tools Group

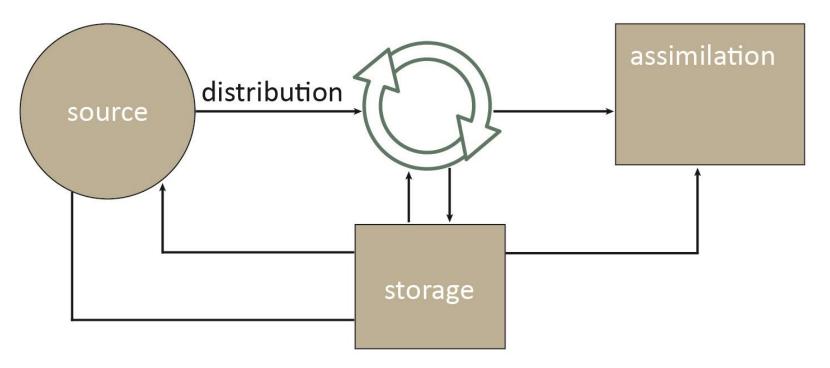


Strategy	ategy Hours: Actual and Percentage							
	N	Now			204	40		
Comfort	942	11%	885	10%	936	11%		
Sun Shading of Windows	586	7%	778	9%	817	9%		
High Thermai Wass	154	۷%	217	2%	240	3%		
High Thermal Mass Night Flushed	154	2%	228	3%	256	3%		
Direct Evaporative Cooling	109	1%	179	2%	198	2%		
Two-Stage Evaporative Cooling	111	1%	192	2%	216	2%		
Natural Ventilation Cooling	104	1%	162	2%	170	2%		
Fan-Forced Ventilation Cooling	72	1%	104	1%	106	1%		
Internal Heat Gain	1589	18%	1353	15%	1361	16%		
Passive Solar Direct Gain Low Mass	899	10%	826	9%	796	9%		
Passive Solar Direct Gain High Mass	624	7%	559	6%	539	6%		
Wind Protection of Outdoor Spaces	259	3%	254	3%	249	3%		
Humidification Only	0	0%	0	0%	0	0%		
Dehumidification Only	491	6%	659	8%	692	8%		
Cooling, add dehumidification if needed	305	3%	549	6%	604	7%		
Heating, and humidification if needed	4791	55%	4545	52%	4436	51%		

Predicted Effectiveness of Comfort Strategies for Minneapolis / Saint Paul – Climate Consultant, UCLA Energy Design Tools Group

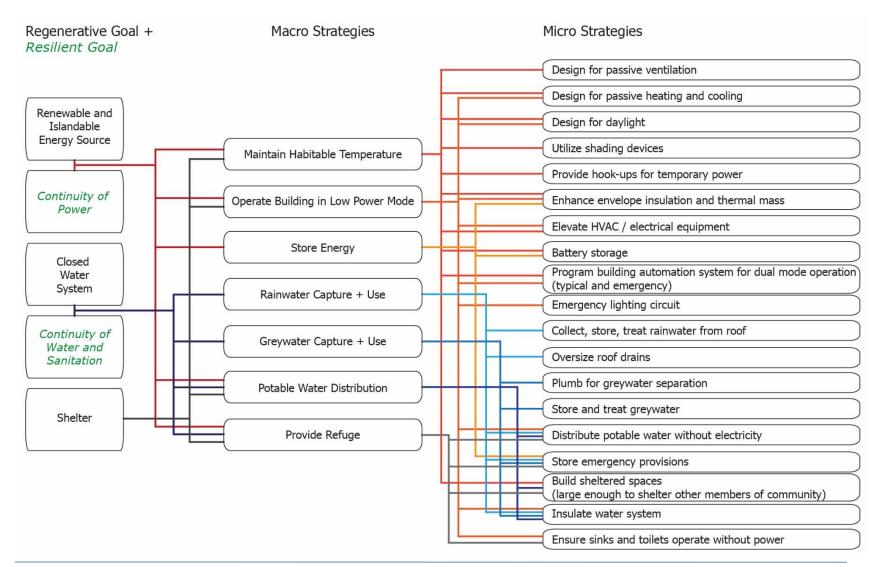


- Energy use in code buildings decreases over time
- Increase in cooling load is outweighed by decrease in heating loads
- Energy use in high performing buildings stable over time

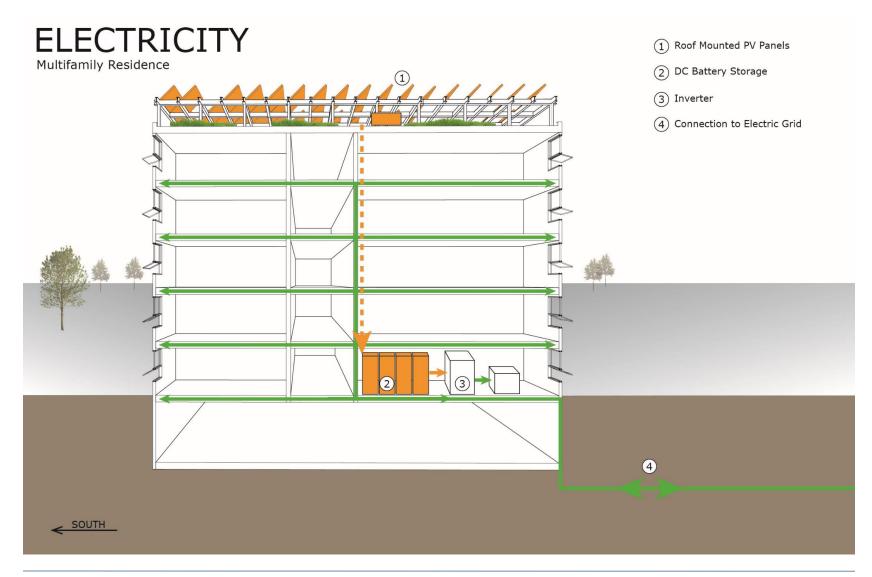


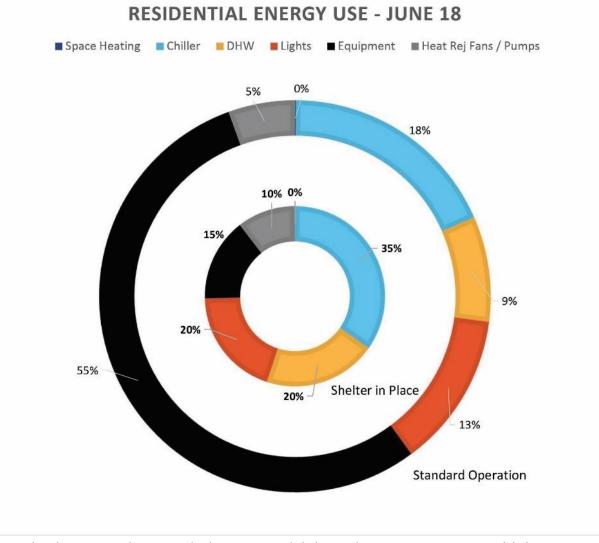
- Energy use in code buildings decreases over time
- Increase in cooling load is outweighed by decrease in heating loads
- Energy use in high performing buildings stable over time

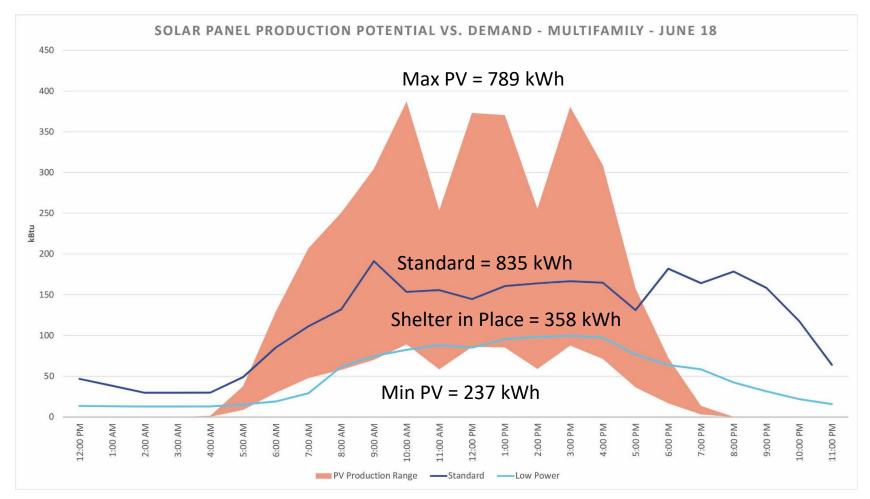
Regenerative Systems

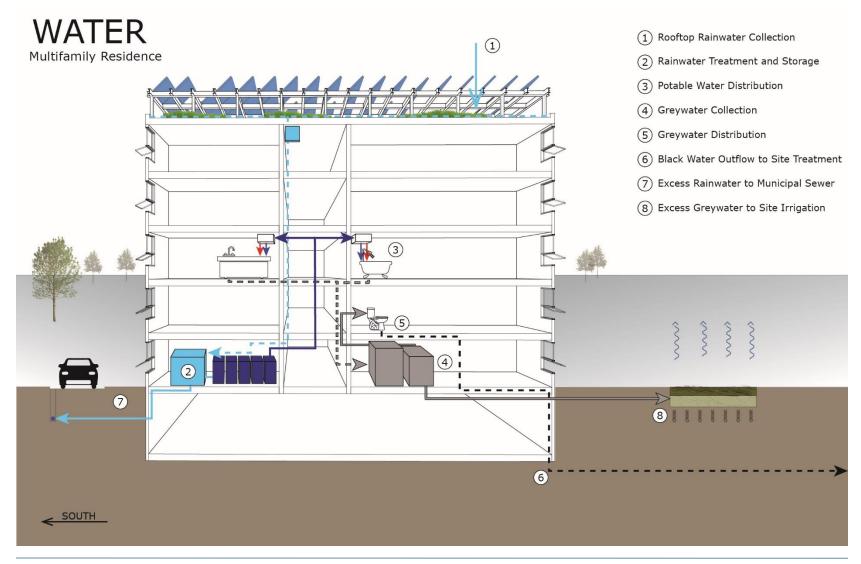


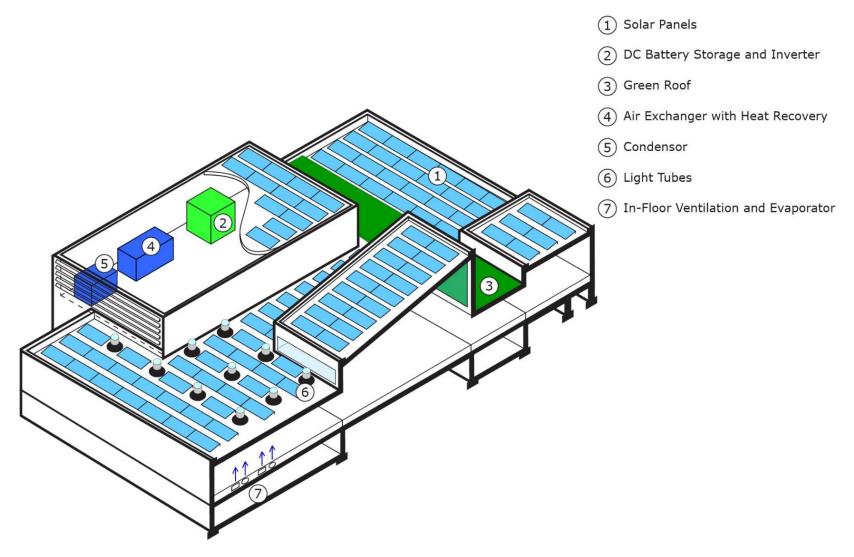
- Effectiveness as end goal
- Within renewal capacity
- Integrate with natural processes
- Symbiosis
- Closed-loop system
- Multiple pathways


John Tillman Lyle, Regenerative Design for Sustainable Development, 1994

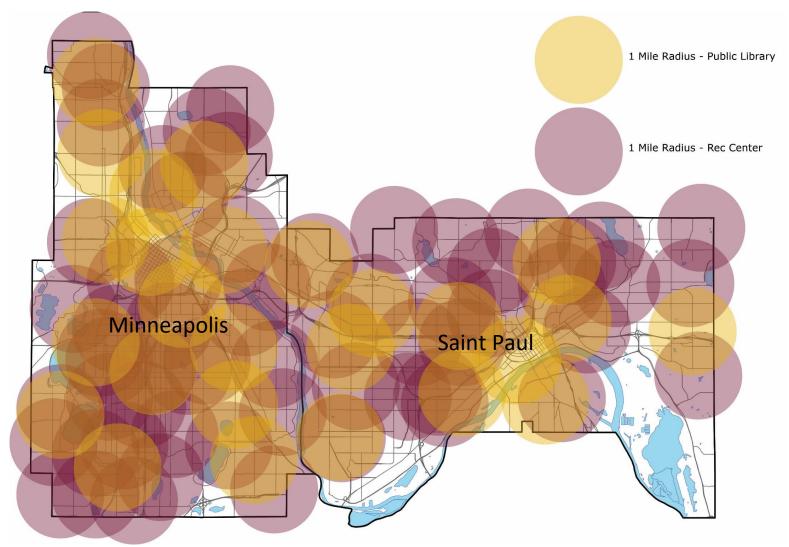

Regenerative and Resilient Design Strategies



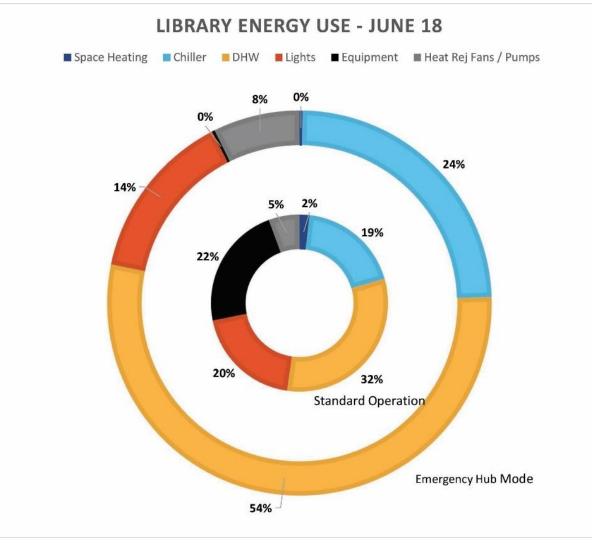

Simulated Energy Use during Standard Operation and Shelter in Place Operation. Energy Modeled in IES-VE 2015



Predicted PV Production and Predicted Energy Use. Energy Modeled in IES-VE 2015, PV data from NREL PVWatts

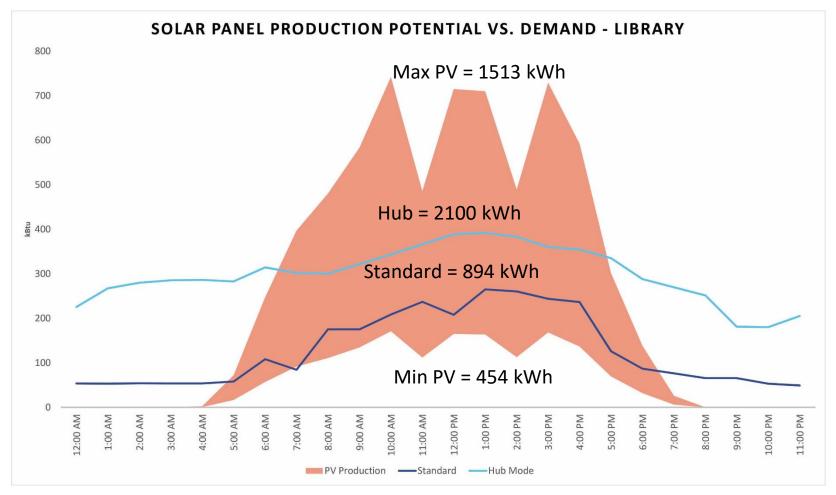


Potential Areas Served by Disaster Hubs

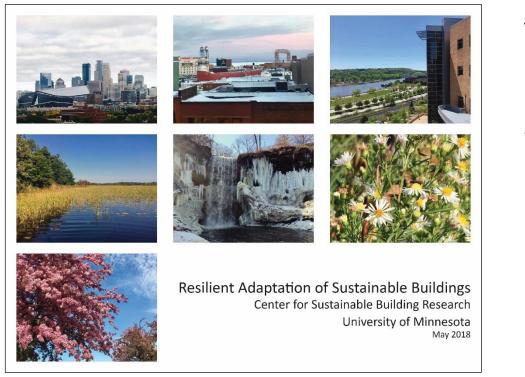


Library can support approximately 550 people in 'hub mode'

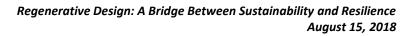
- Roughly 10% of population living within ½ mile
- Statistically will include:
 - 64 people with a disability
 - 125 people living within 150% of poverty line
 - 42 children under age 5
 - 52 people over age 65


Potential Population Served by Disaster Hubs American Community Survey, 2015

Simulated Energy Use during Standard Operation and Disaster Hub Operation. Energy Modeled in IES-VE 2015



Predicted PV Production and Predicted Energy Use. Energy Modeled in IES-VE 2015, PV data from NREL PVWatts



Next Steps

View the full report at www.CSBR.umn

