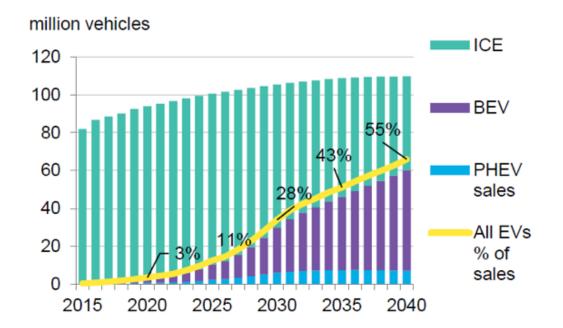


EV-Ready Building Codes



MEEA Conference November 14, 2019

Matt Frommer Southwest Energy Efficiency Project <u>mfrommer@swenergy.org</u>

Electric Vehicle Market Projections

There are currently 1.3 million EVs in the US, with a 2.2% nationwide EV market share

Electric Vehicle Benefits

• Economic Savings:

- Equivalent of paying \$1.08 per gallon in Nebraska
- Only 20 moving parts in an EV compared to 2,000+ in an ICE vehicle – 35% lower costs

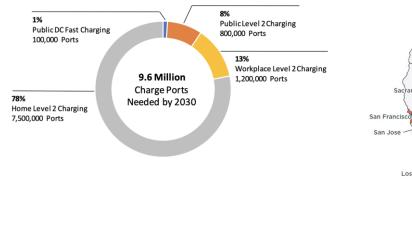
• Environmental Savings:

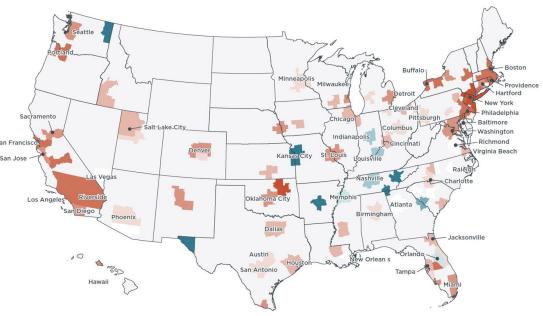
- Zero tailpipe emissions
- 66% fewer GHG emissions gets cleaner each year the grid transitions toward Renewables

• Efficiency Savings:

- ICE vehicles are 17-21% efficient vs an electric motor, which is 90-95% energy efficient
- Level 2 chargers are 6% more efficient than Level 1

POPULAR EVs AND THEIR RANGE


VEHICLE MAKE/ MODEL	EPA-RATED DRIVING RANGE ON SINGLE CHARGE (MILES)		
Tesla Model 3	240-310		
Hyundai Kona EV	258		
Kia Niro EV	239		
Chevrolet Bolt	238		
Nissan Leaf Plus	226		
Audi E-Tron	204		
Volkswagen eGolf	125		
Hyundai Ioniq PHEV	32 electric (520 total)		
Chrysler Pacifica Hybrid	29 electric (630 total)		
Toyota Prius Prime	25 electric (640 total)		


Source: Plug-in America

Automaker	Electrification Commitment		
Audi	20 new EV models by 2025		
BMW	12 EVs by 2025		
Volvo	50% of sales are electric by 2025 (5 new BEVs by 2021)		
GM	20 electric cars by 2023		
Jeep	10 PHEVs and 4 BEVs by 2022		
Renault-Nissan-Mitsubishi	Sell 1 million EVs per year by 2022 (12 new BEVs)		
Ford	40 EV models by 2022: 16 BEVs, 24 PHEVs		
Honda	2/3 of all sales to be electric by 2030		
Hyundai-Kia	8 new EVs by 2022		
Jaguar - Land Rover	Pledge to manufacturer only EVs and hybrids after 2020		
Toyota	10 BEVs by early 2020s		

The Scale of the EV Infrastructure Challenge

EV Charging Infrastructure by Location (2030)

Charging infrastructure in 2017 as a percentage of that needed by 2025

■ 1%-10% ■ 11%-20% ■ 21%-30% ■ 31%-40% ■ 41%-50% □ 51%-60% ■ 61%-70 ■ 61%-70 ■ 81%-90% ■ 91%-100%

Figure ES-1. Public and workplace charging infrastructure in place in 2017 as a percentage of infrastructure needed by 2025 by metropolitan area

EV Charging 101

LEVEL 1 STANDARD OUTLET

- Connector provided with every EV
- Plug into a standard 120V wall outlet
- Great for overnight or workplace charging
- Ideal for daily commutes under 40 miles

miles per hour

LEVEL 2 240 VOLT OUTLET

- Available for both home and stations
- Provides a full charge for most EVs in:

to full charge

DC FAST CHARGE

- · Faster charging rates at commercial locations.
- · 3 different connectors depending on vehicle:

25

miles

per hour

Why Adopt EV Infrastructure Building Codes?

1-Help overcome a critical barrier to EV adoption by facilitating EV charging infrastructure

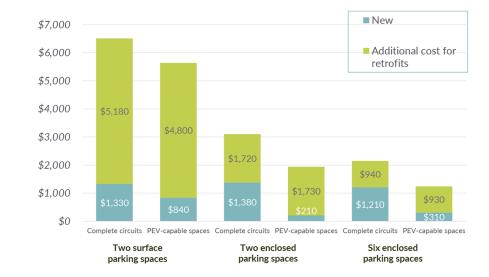
Electrical system retrofits

Breakage and repair of hardscapes

2-Avoid EV charging infrastructure retrofit costs including:

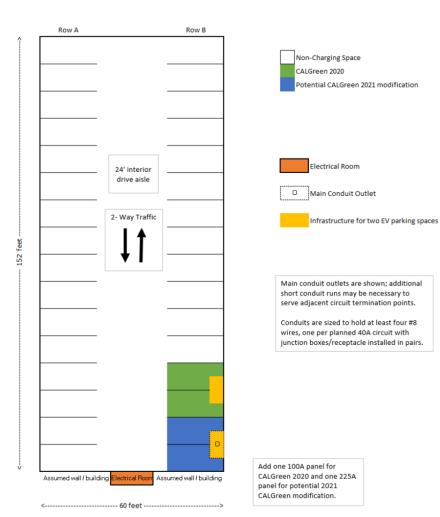
Soft Costs: permitting, inspection, HOA or landlord approvals, etc.

Why do we need EV charging requirements in our building codes?


දා

"Installing EV capable parking spaces in stand-alone retrofits is typically 4 to 6 times more expensive compared to installing EV capable parking spaces during new construction. If EV capable parking spaces are installed during new construction, \$2,040 - \$4,635 per parking space is saved over the retrofit scenario."

- Energy Solutions (2019)


Why Adopt EV Infrastructure Building Codes?

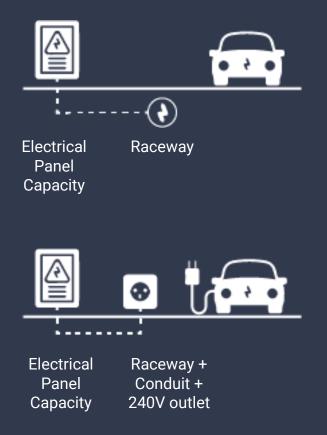
Cost Savings Modeled for the City of Oakland

Multi-family challenges

- 50% of Americans do not have access to a dedicated off-street parking space at their residence
- Logistical barriers of installation:
 - HOA rules
 - Shared or non-deeded parking spaces
 - Split incentive for renters

Residential: EV Infrastructure Options

1. EV-Capable


Install electrical panel capacity with a dedicated branch circuit and a continuous raceway from the panel to the future EV parking spot.

Sample Code: Denver, CO

2. EV-Ready Outlet

Install electrical panel capacity and raceway with conduit to terminate in a junction box or 240-volt charging outlet.

<u>Sample Code: Boulder, CO</u>

Commercial: EV Infrastructure Options

1. EV-Capable

Electrical panel capacity + branch circuit + raceway Aspen, CO: 3% of parking is EV-Capable (IBC) Atlanta, GA: 20% is EV-Capable (Ordinance)

2. EV-Ready

EV-Capable + 240-volt outlet Boulder, CO: 10% of parking is EV-Ready Outlet

3. EV-Installed

Install a minimum number of Level 2 charging stations Palo Alto, CA: 5-10% of parking is EV-Installed

2019 Progress on EV building codes

Municipality	State	Year	Location	Single-family	Multi-family	Commercial
Denver (pending)	со	2019	IBC / IRC	1 EV-Ready Space per dwelling Unit	5% EV-Installed, 15% EV-Ready, 80% EV-Capable	5% EV-Installed, 10% EV-Ready, 10% EV-Capable
Salt Lake City	UT	2019	IBC / IRC + Zoning Ordinance		1 EV-Installed Space for every 25 parking spaces	
Seattle	WA	2019	Ordinance	1 EV-Ready Space per dwelling Unit	100% EV-Ready up to 6 space, 20% EV-Capable for 7+ spaces	10% EV-Ready
Sedona	AZ	2019	Appendix	1 EV-Capable Space per dwelling Unit		5% EV-Capable
Golden	со	2019	Ordinance		1 EV-Installed Space per 15 parking space, 15% EV-Capable	
San Jose	CA	2019	Ordinance	1 EV-Ready Space per dwelling Unit	10% EV-Installed, 20% EV- Ready, 70% EV-Capable	10% EV-Installed, 40% EV- Capable
Fort Collins	со	2019	IBC / IRC	1 EV-Capable Space per dwelling Unit	10% EV-Capable	
Vancouver	BC	2019	IBC / IRC	1 EV-Ready Space per dwelling Unit	100% EV-Ready	10% EV-Ready

EV Building Code Resources

www.swenergy.org

Residential Building Code:

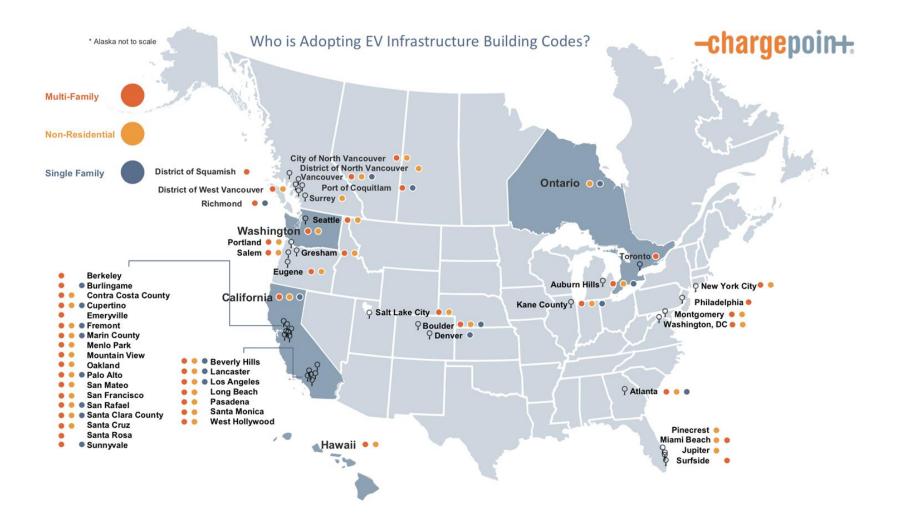
EV Building Codes: Residential IRC 1-pager

Sample Residential Code Amendment

Commercial Building Code:

EV Building Codes: Commercial IBC 1-pager

IBC Sample Building Code Amendment


EV Infrastructure Cost-Effectiveness

Contact:

Matt Frommer - mfrommer@swenergy.org

Ford Electric Crossover (coming Nov. 17)

