

Energy Code Resources

Technical assistance or training requests:

Matt Belcher, Energy Code Consultant <u>Matt@moenergycodesupport.org</u> 314.749.4189

Energy Code Resources

Missouri Residential Building Energy Code Construction Practices Study: <u>https://energy.mo.gov/energy-codes/missouri-residential-building-codes-study</u> For additional information on other DOE Field Studies and participating states, please visit <u>https://www.energycodes.gov/compliance/energy-code-field-studies</u>. Additional education resources are available at <u>www.southfaceonlinetraining.org</u>.

www.southface.org

mikeb@southface.org

About Southface

www.southface.org

Building a Regenerative Economy, Responsible Resource Use & Social Equity Through a Healthy Built Environment for All

- Mike Barcik Technical Principal
- mikeb@southface.org

Why building science?

- Employ scientific principles from a variety of fields that govern building performance
- Optimize building performance and understand, prevent and correct building failures
- Systems approach to houses
- Physics of
 - Heat
 - Air
 - Moisture

All efficiency measures should take occupants into account (e.g., air sealing & ventilation)

Who Are You?

- Weatherization
- HERS Raters
- Code official
- Designer
- Contractor / Trades
- Utility
- Manufacturers / Product Rep
- Policy / Government
- Building Managers
- Home Inspectors
- Other?

Learning Objectives

- A little math...making a case for why continuous insulation is worthwhile (assembly U-factors, coldest point)
- Energy flow through assemblies exterior vs. interior continuous insulation
- Cold climates understanding the minimum amount of exterior insulation needed
- Common continuous insulation products EPS, XPS, Poly-iso
- Other continuous insulation products fiberglass blankets, cellulose "boards", rockwool, spray applied foams
- Hybrid sheathing products, nail-base, SIS, SIPs
- Retrofit case study
- Environmental concerns GWP, flammability, etc.

Air handler and ductwork

Building Science: Heat transfer

- Heat is a form of energy
- Heat moves from hot to cold
- 3 methods of heat transfer:
 - Radiation: Sun to shingles; underside of decking to other attic surfaces
 - Conduction: Through shingles and decking
 - Convection: Soffit vents through attic to ridge

Why is Continuous Insulation Worth It?

• **Conduction** is heat flowing through a solid material (insulation slows conduction)

Continuous Insulation - Math

Conduction Heat Flow

Heat transfer through a solid object: the formula for calculating conduction heat transfer is $q = U \times A \times \Delta T$

q = heat flow (Btu/hr)

U = inverse of R-Value [U=1/R, R=1/U] (Btu/hr ft² °F)

A = area (square feet)

 ΔT = temperature difference across component (°F)

 $\mathbf{q} = \mathbf{U} \times \mathbf{A} \times \Delta \mathbf{T}$

Manual J: $q = A \times HTM$ where $HTM = U \times \Delta T$

Effect of U-factor (U = 1/R)

- Smaller is better
- Double the R-value, Ufactor is halved and so is amount of heat transfer
- Weighted average Ufactor of assembly includes thermal bridging effects of framing

Conduction

Low R-value (R-5)

(1/5) x 500 x (70-20) = **5,000** Btu/hr

High R-value (R-10)

(1/10) x 500 x (70-20) = **2,500** Btu/hr

Conduction Equation

Heat = $q = UxAx\Delta T$ = Area x ΔT Transfer R-Value

Insulation Coverage is key!

• If 990 s.f. of R-38 is installed with 10 s.f. of uninsulated attic access (R-1), it effectively yields the same heat transfer as R-28!

$$U_{avg} = \frac{U_1 \times A_1 + U_2 \times A_2 + U_3 \times A_3}{A_{total}}$$
$$U_{avg} = \frac{0.026 \times 990 + 1 \times 10}{1000}$$
$$U_{avg} = 0.036 \quad R = 27.7$$

U-factors / R-values of Insulated Assemblies

• Grade I - Effective R-value of wall with cavities and studs

If 23% of the wall is wood (77% cavity), the weighted average U-factor is: Uavg = $0.77 \times (1/15.3) + 0.23 \times (1/6.7) = 0.08466$ Ravg = 1/U = 11.8

RESNET

<section-header><section-header><section-header><section-header><text><text><text><text>

U-factors / R-values of Insulated Assemblies

• Grade III - Effective R-value of wall with cavities, studs and voids

the weighted average U-factor is: Uavg = 0.72 x (1/15.3) + 0.23 x (1/6.7) + 0.05 x (1/3.3) = <u>.09654</u>

Compare

MISSOUR

RESNET

to R-11.8

U-factors / R-values of Continuously Insulated Assemblies

• Grade I - R-5 continuous insulation installed

Question: Which is preferred?

R-20 Cavity

U-0.059

R-13 Cavity + R-5

U-0.057

The R-13+R5 is better since it has a lower U-factor!

U-factors from RESCheck (www.energycodes.gov)

Can you have too little exterior insulation?

Figure 1: Insulating sheathing reducing air leakage condensation

Our Services Articles and Papers

SV

Ameren Missouri

About

Home | Building Science Digests | BSD-163: Controlling Cold-Weather Condensation Using Insulation

BSD-163: Controlling Cold-Weather Condensation Using Insulation

John Straube

Continuous Insulation - Products

Continuous Insulation – Rigid foam

EPS Foam, ~R-4/inch

XPS Foam, ~R-5/inch

Missouri

 A desirable insulation installation is one that will stay in place, be resilient in case of moisture issues, and low cost

Poly-iso Foam, ~R-6+/inch

Continuous Insulation – Spray

Open Cell Foam, ~R-3.7/inch

> Cellulose, ~R-3.7/inch

Closed Cell Foam, ~R-6+/inch

SV/

Ameren Missouri

Continuous Insulation – Other Products

Continuous Insulation – Hybrid/Sheathing Products

SV.

Ameren MISSOURI

Continuous Insulation – Hybrid/Sheathing as WRB

Retrofit Case Study: Lap Siding nailed directly to studs

Siding Drainage Plane Retrofit

Siding Drainage Plane Retrofit

Install Structural Insulated Sheathing (SIS)

Set Nails in SIS

Prep for Furring Strips

3" Insect Screen Before Furring

3/16" PT Furring Strips (with lower end primed) Aligns with Wall Studs and Covers Top Half of Insect Screen

Bottom of Pest Screen Folded Up & Stapled (also serves as deterrent for ember entry during a wildfire)

Ready for Siding ...

Siding Caulked At Edge, Not At Butt Joints

Floating Butt Joint With Flashing

3/16" Gap Between Siding & WRB

Siding Installation

Siding Drainage Plane Retrofit

Siding Drainage Plane Retrofit

Kitchen hood exhaust penetration

42

Siding Drainage Plane Retrofit

Cont. Insulated Roofs/Ceilings – SIPS, nail base

Environmental Impacts

Environmental Impacts of Insulation Products

SV

Ameren Missouri

Carbon Impact of various insulation types

Material	Example manufacturers / products	GHG Impact ²	Notes
Wood fiber	Steico, Gutex	Lowest / Best	Boardstock, batts
Cellulose	Cleanfiber, GreenFiber	Lowest / Best	Densepack, loosefill
Fiberglass	CertainTeed Sustainable, Knauf EcoBatt	Low	Batts, boardstock, loosefill/densepack
Polyisocyanurate	DuPont Thermax Low		Boardstock; Blowing agent: pentane
EPS* (expanded polystyrene)	rene) Atlas, BASF Neopor Low		Boardstock; Blowing agent: pentane
Open cell spray foam Demilec APX, Lapolla Foam-Lok 450 Low		Low	Site-blown; Blowing agent: water
Phenolic foam	Kingspan Kooltherm		Boardstock; Blowing agent: pentane
Cellular glass	Glavel, Foamglas	Low	Aggregate, boardstock
Mineral wool	Rockwool, Owens Corning	Medium	Batts, boardstock
Closed cell spray foam, HFO	O Demilec Heatlok HFO Pro, Lapolla ProSeal HFO Medium Sit		Site-blown; Blowing agent: HFOs
Next gen. XPS*, HFO/HFC	Owens Corning NGX series, DuPont XPS-ST-100 series	orning NGX series, DuPont XPS-ST-100 series Medium / High Boardstock; Blowing ag	
Closed cell spray foam, HFC	Demilec Heatlok XT, Dow Froth-Pak	Highest / Worst	Site-blown; Blowing agent: HFCs
XPS*	Dow Styrofoam (blueboard), Owens Corning (pinkboard)	Highest / Worst	Boardstock; Blowing agent: HFCs

• Worst offenders are XPS and cc SPF (HFC)

47

Carbon Impact & other environmental features

 Worst offenders are XPS and cc SPF (HFC)

Material	GHG impact ^a	Recycled content ^b	Toxic emissions ^c	Notes ^d
Wood fiber	Lowest / best			
Cellulose	Lowest / best			
Fiberglass	Low			Avoid formaldehyde binders
Polyisocyanur ate	Low			Chlorinated flame retardant (otherwise fairly inert) Toxic manufacturing process
EPS (expanded polystyrene)	Low			Brominated flame retardant
Open cell spray foam	Low			Off-gassing under investigation by EPA Chlorinated flame retardant Highly toxic when applied
Phenolic foam	Low		See note	Phenol formaldehyde content, but low emissions
Mineral wool	Medium		See note	Choose low-emitting products
Closed-cell spray foam, HFO	Medium			Off-gassing under investigation by EPA Chlorinated flame retardant Highly toxic when applied
Material	GHG impact	a content ^b	Toxic emissions ^c	Notes ^d
Closed-ce spray foa H	11 Highest / m, worst			Off-gassing under investigation by EPA Chlorinated flame retardant Highly toxic when applied
XPS (extrud polystyren	ed Highest / e) worst			Brominated flame retardant (otherwise fairly inert) Toxic manufacturing process

Recycled content and toxic emissions potential of insulation materials. Source: Efficiency Vermont analysis and BuildingGreen Guide to Insulation.

SV

Ameren Missouri

Thank you!

mikeb@southface.org Matt@moenergycodesupport.org

Please Unmute or use the Zoom Chat function to submit any questions or comments

www.southface.org www.energycodes.gov www.eeba.org www.energyvanguard.com www.buildingscience.com www.greenbuildingadvisor.com

