
Nebraska's Residential Energy Code: The 2018 IECC RES Check and HVAC Rightsizing

Nebraska Energy Code Training Program Instructor: Matt Belcher September 1, 2022, 1:00 p.m. – 2:30 p.m.

Housekeeping

- Attendees are muted upon entry
- Enter questions in the chat box
- This training is being recorded
- Slides and recording will be emailed to attendees and posted on the MEEA website
- CEUs are provided (ICC and AIA)
- Email Corie at <u>canderson@mwalliance.org</u> with any questions

About MEEA

- Nonprofit membership organization with 160+ members, including:
 - Utilities
 - Research institutions
 - State and local governments
 - Energy efficiency-related businesses
- MEEA helps stakeholders understand and implement cost-effective energy efficiency strategies

About Matt and Verdatek Solutions

- 40+ Years in the Building Industry
- Served as a Top Building Codes official in St. Louis area
- Director of University of Missouri Columbia High Performance Buildings Research Center. Created and Instructed Curriculum for Students and Industry Professionals
- Assisting University of Missouri Science & Technology in Building and Energy Code Curriculum and Policy
- ICC Member serving on 2012, 2015, 2018 and 2024 Energy Code Development Committee. 2021 Building Code-General Committee
- NAHB Approved Instructor for Advanced Building Science
- Advanced Business Management

Learning Objectives

- Understand prescriptive energy code requirements from 2018 IECC
- Identify standards for insulation requirements and fenestration performance
- Understand how to use RESCHECK for a simple UA Trade-off
- Learn how RESCHECK can be used as a Simulated Performance Alternative tool

Nebraska Residential Field Study

- Conducted in 2017 by **Nebraska Department of Environment** and Energy. 2009 IECC was the baseline.
- Collected and analyzed several data points for new homes, including:
 - Envelope air leakage
 - Efficacy in lighting
 - Duct leakage
 - Ceiling & exterior wall insulation
 - Basement & slab insulation
 - Windows

For More Information and Data:

https://www.energycodes.gov/sites/default/files/documents/ Nebraska_Residential_Compliance_Evaluation_final.pdf

Design Approach for a High-Performance Home

Building Science as guide

Understand physics of heat air and moisture flow

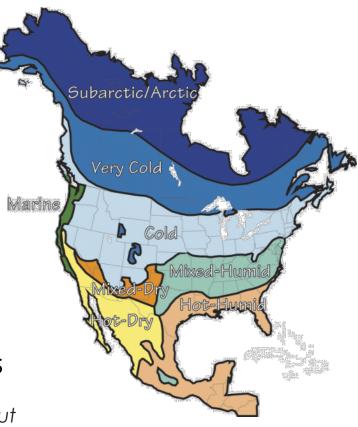
High Performance Enclosure

Sound structure, shell is tight, well-insulated and resilient

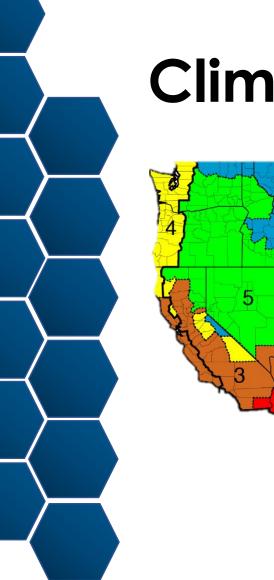
• Air Distribution

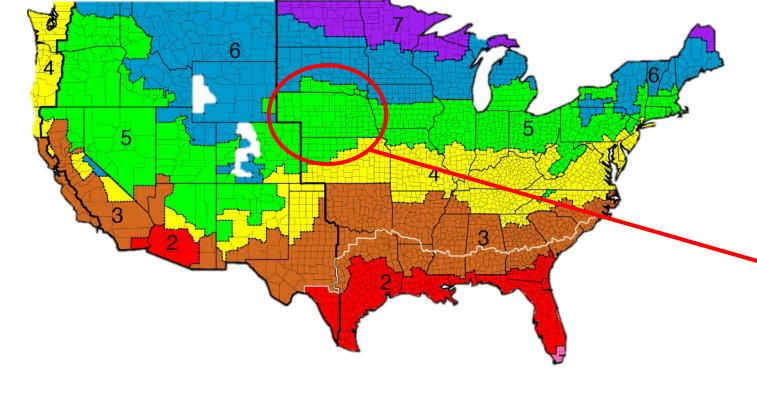
Sealed & insulated ducts – located inside building envelope,

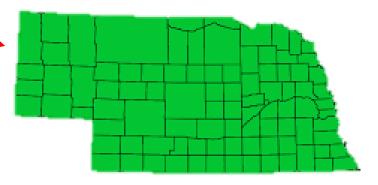
intentional fresh air delivery


Reduced Equipment & Loads

Efficient Heating, Cooling, Hot Water, Lights, Appliances

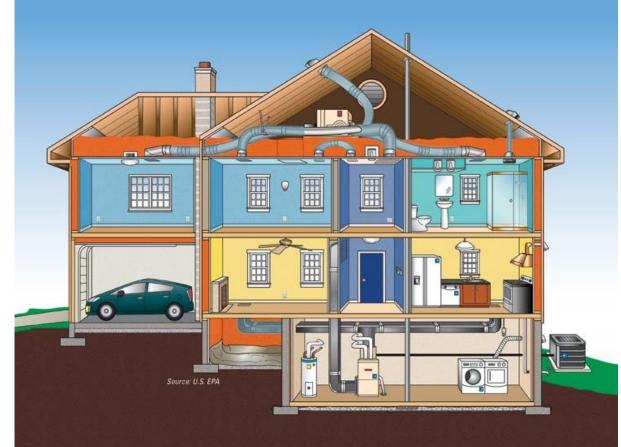

The Key: It's not necessarily the stuff in the building — it's how it's all put together! (The house is a system)





Climate Zones

- Nebraska has only one climate zone – 5A
- Cold & Moist climate

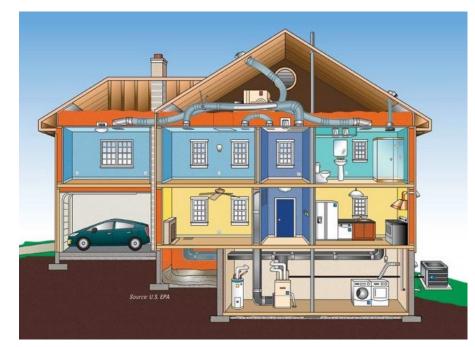


Part I

Building Science

A house is a system made up of interrelated parts:

- The building thermal envelope
- Systems
 - Heat and air conditioning
 - Ventilation
 - Water heating and distribution
- Lighting & appliances

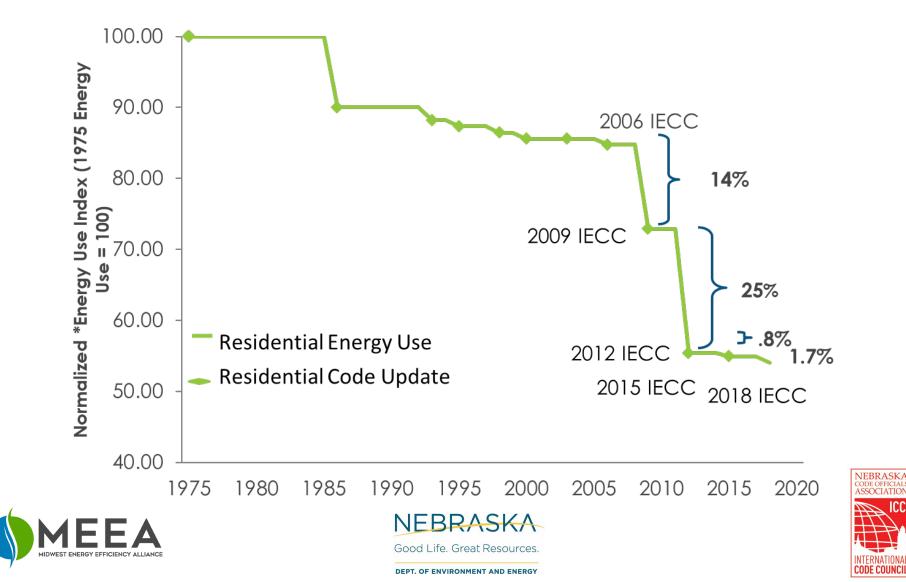


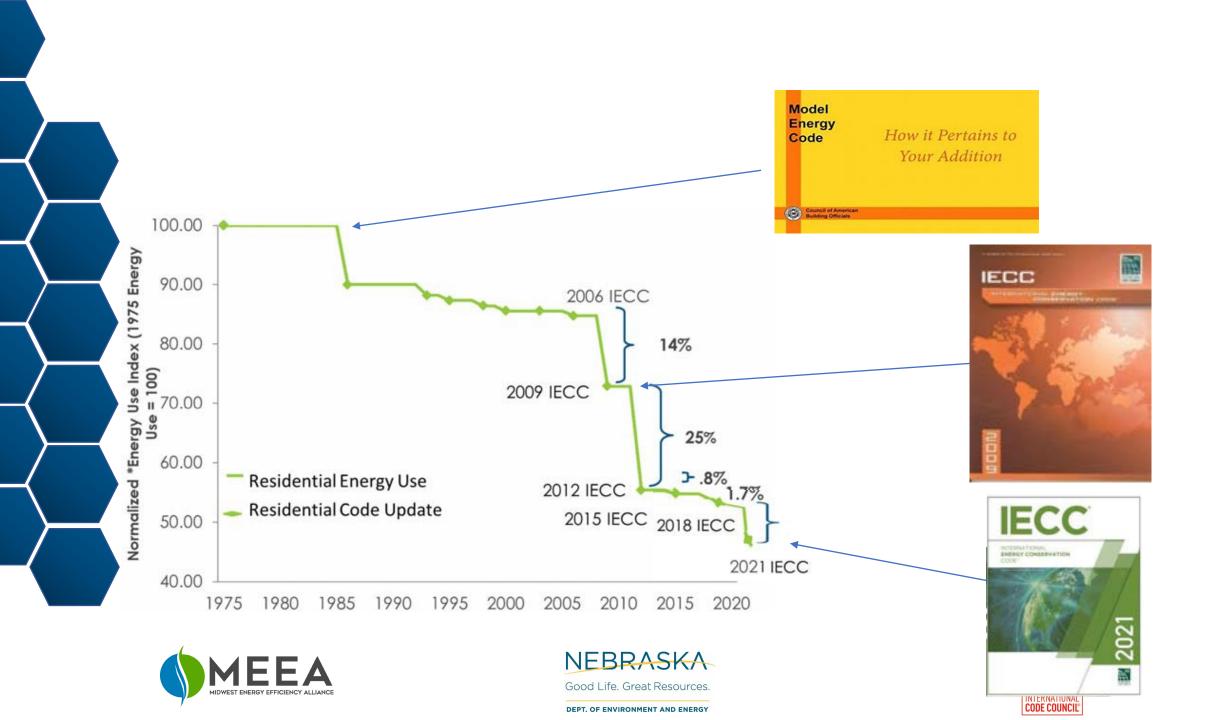
Building Science Building Thermal Envelope

IECC Definition

The basement walls, exterior walls, floor, roof and any other building elements that enclose conditioned space or provide a boundary between conditioned space and exempt or unconditioned space.

What parts of this house are enclosed by the thermal envelope?





Residential Energy Code Background

Part 2

Energy Code: Residential Building

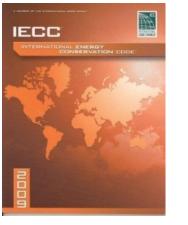
Applies to:

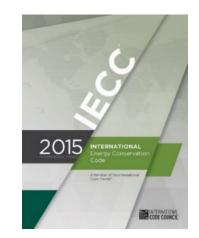
- New construction
- 1 and 2 family (R3)
- Multi-family, 3 stories and less (R2 and R4) – IECC 2009
- Additions, Alterations, Repairs

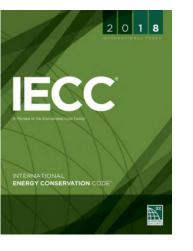
Exempt Buildings

- No conditioning
- Historical

CONDITIONED SPACE. For energy purposes, space within a building that is provided with heating and/or cooling *equipment* or systems capable of maintaining, through design or heat loss/gain, 50°F (10°C) during the heating season and 85°F (29°C) during the cooling season, or communicates directly with a *conditioned space*. For mechanical purposes, an area, room or space being heated or cooled by any *equipment* or *appliance*.

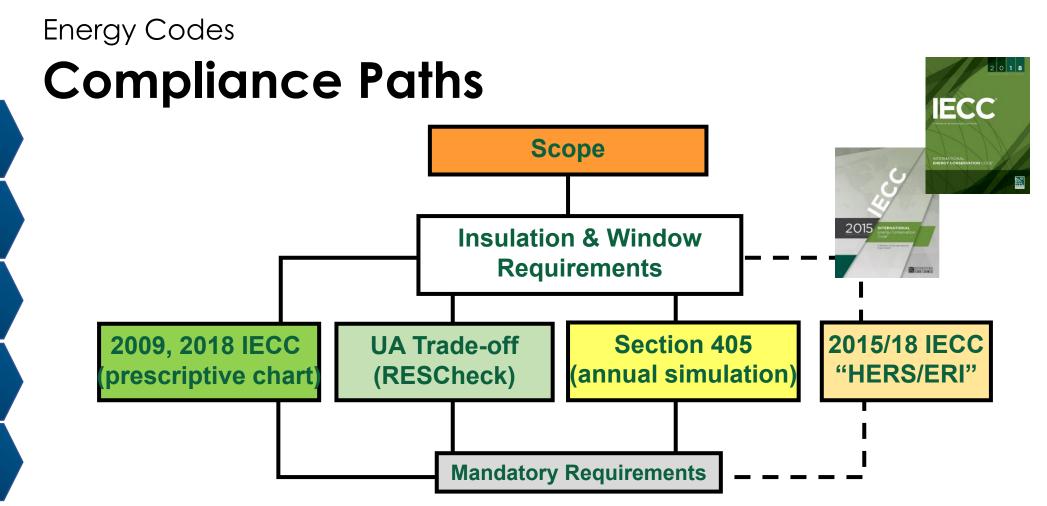

Scope of Residential Energy Code


- Focus is on building envelope
 - o Ceilings, walls, windows, floors, foundations
 - Sets insulation levels, window U-factors and SHGC
 - o Infiltration control
 - Caulk and seal to prevent air leaks
 - Verify envelope tightness with blower door test (or visual inspection for 2009 code)
- Ducts
 - No building cavities as ducts (post-2009)
 - Seal properly and insulate even if all ductwork is in conditioned space
 - \circ $\,$ Verify tight with duct pressurization test $\,$
- Lighting equipment
 - High-efficacy bulbs required (50%, 75%, 90%)
- HVAC equipment efficiencies covered by different DOE standard
- No appliance requirements


NFBRASKA

ife Great Resources

IECC Code Differences – '15 to '18


- Window Ufactors dropped slightly from U35 to U32 & U30 (CZ's 4-5)
- Exception for log homes built according to ICC 400
- ERV/HRV ducts exempt from leakage testing (if independently ducted).
- Ducts allowed to be buried in ceiling insulation
 - Ducts R-8
 - Minimum surrounding insulation R-19 (R-13 for CZ1-3A, ducts >3')
 - Effective R-25 when modeling
- Ducts in conditioned space
 - Completely inside thermal envelope
 - Buried ducts with AHU inside envelope plus < 1.5% Total Leakage plus threshold of ceiling insulation
- 90% Efficient Lighting (LEDs)
- ERI relaxed targets (62 for CZ4, 61 for CZ5, backstop penalty for renewables)

- The new Energy Rating Index (ERI) path gives the most design flexibility (e.g., credit for mechanical equipment efficiency).
- It also credits items not covered by the code (e.g., appliance efficiencies).

Energy Codes 2009 IECC- Section 402.1

One prescriptive "answer" for how to build per climate zone (CZ: 4 and 5)
Includes lots of footnotes

	TABLE 402.1.1 INSULATION AND FENESTRATION REQUIREMENTS BY COMPONENT*										
CLIMATE ZONE	FENESTRATION	SKYLIGHT ^b U-FACTOR	GLAZED FENESTRATION SHGC ^{5, 9}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> -VALUE	MASS WALL <i>R</i> -VALUE ^I	FLOOR <i>R</i> -VALUE	BASEMENT [©] WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> -VALUE & DEPTH	CRAWL SPACE ^c WALL <i>R</i> -VALUE	
1	1.2	0.75	0.30	30	13	3/4	13	0	0	0	
2	0.65 ⁱ	0.75	0.30	30	13	4/6	13	0	0	0	
3	0.50 ⁱ	0.65	0.30	30	13	5/8	19	5/13 ^r	0	5/13	
4 except Marine	0.35	0.60	NR	38	13	5/10	19	10/13	10, 2 ft	10/13	
5 and Marine 4	0.35	0.60	NR	38	20 or 13+5 ^h	13/17	30 ^g	10/13	10, 2 ft	10/13	
6	0.35	0.60	NR	49	20 or 13+5 ^h	15/19	30 ^g	15/19	10, 4 ft	10/13	
7 and 8	0.35	0.60	NR	49	21	19/21	38 ^g	15/19	10, 4 ft	10/13	

Energy Codes

Prescriptive R-values 2015 IECC vs. 2018 IECC

• One prescriptive "answer" for how to build per climate zone (CZ: 4 and 5)

TABLE R402.1.2 INSULATION AND FENESTRATION REQUIREMENTS BY COMPONENT^a

CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^b	SKYLIGHT [♭] <i>U-</i> FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> -VALUE	MASS WALL <i>R</i> -VALUE	FLOOR <i>R</i> -VALUE	BASEMENT [©] WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> -VALUE & DEPTH	CRAWL SPACE ^c WALL <i>R</i> -VALUE

2015

	3	0.35	0.55	0.25	38	20 or 13+5 ^h	8/13	19	5/13 ^f	0	5/13
,	4 except Marine	0.35	0.55	0.40	49	20 or 13+5 ^h	8/13	19	10/13	10, 2 ft	10/13
I	5 and Marine 4	0.32	0.55	NR	49	20 or 13+5 ^h	13/17	30 ^g	15/19	10, 2 ft	15/19
	6	0.32	0.55	NR	49	20+5 or 13+10 ^h	15/20	30 ^g	15/19	10, 4 ft	15/19

402.1.4 is

table for

U-factors

similar

2018

3	0.32	0.55	0.25	38	20 or 13+5 ^h	8/13	19	5/13 ^f	0	5/13
4 except Marine	0.32	0.55	0.40	49	20 or 13+5 ^h	8/13	19	10 /13	10, 2 ft	10/13
5 and Marine 4	0.30	0.55	NR	49	20 or 13+5 ^h	13/17	30 ^g	15/19	10, 2 ft	15/19
6	0.30	0.55	NR	49	20+5 ^h or 13+10 ^h	15/20	30 ^g	15/19	10, 4 ft	15/19
					Good Life. Great Res	sources.				

BRASKA E OFFICIAL

Energy Codes

Prescriptive <mark>U-factors</mark> 2015 IECC vs. 2018 IECC

• One prescriptive "answer" for how to build per climate zone (CZ: 4 and 5)

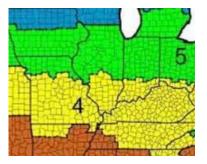


TABLE R402.1.4 EQUIVALENT U-FACTORS^a

(ZONE	FENESTRATION U-FACTOR	SKYLIGHT U-FACTOR	CEILING U-FACTOR	FRAME WALL U-FACTOR	MASS WALL U-FACTOR ^b	FLOOR U-FACTOR	BASEMENT WALL U-FACTOR	CRAWL SPACE WALL U-FACTOR
---	------	--------------------------	----------------------	---------------------	---------------------------	------------------------------------	-------------------	------------------------------	---------------------------------

2015

2015

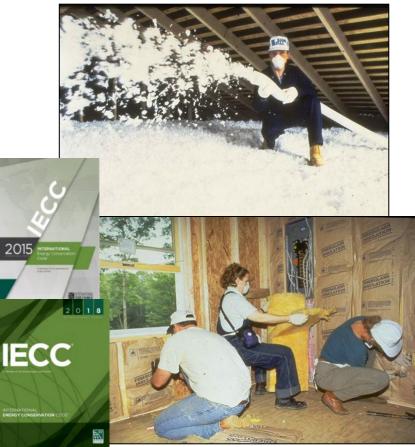
IECC

2 0 1 8

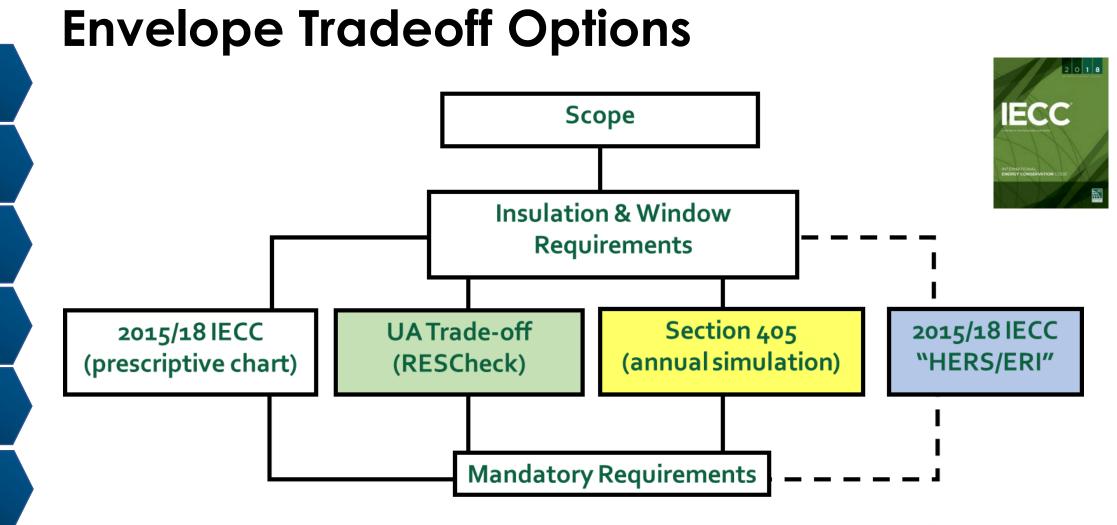
4 except Marine	0.35	0.55	0.026	0.060	0.098	0.047	0.059	0.065
5 and Marine 4	0.32	0.55	0.026	0.060	0.082	0.033	0.050	0.055

2018

4 except Marine	0.32	0.55	0.026	0.060	0.098	0.047	0.059	0.065
5 and Marine 4	0.30	0.55	0.026	0.060	0.082	0.033	0.050	0.055


Energy Codes

Section 402.2: Insulation Requirements


- Details for insulating various aspects of the building envelope:
 - Ceilings with Attic 402.2.1
 - Ceilings w/out Attic 402.2.2
 - Eave baffles 402.2.3
 - Access hatches and doors- 402.2.4
 - Mass Walls 402.2.5
 - Steel Framing 402.2.6
 - Partial Structural sheathed walls 402.2.7
 - Floors 402.2.8
 - Basement Walls 402.2.9
 - Slab-on-grade 402.2.10
 - Crawlspace Walls 402.2.11
 - Masonry Veneer 402.2.12
 - Sunrooms 402.2.13

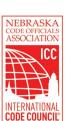
Questions so far?

Please type in chat or unmute

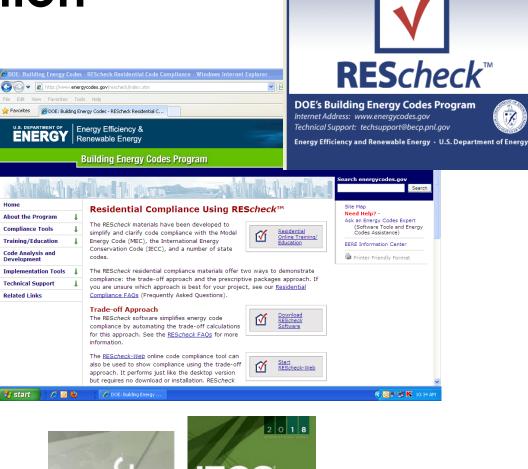
sources.

Total UA Method

- All **mandatory and prescriptive** requirements (other than Table R402.1.2) must be met
- Include documentation to demonstrate compliance with the UA Trade-off method.
 Compliance software submittal must include completed compliance form, inspection checklist and certificate demonstrating compliance with 2018 IECC levels


Continuous Insulated Envelope

• Total wall performance allows for window walls or other design trade offs..


REScheck Tradeoff Option

- www.energycodes.gov
- Software evaluates specific designs quickly
- Demonstrates SHGC compliance
- Allows trade-offs
 - Building envelope components
 - No trade-offs for better heating & cooling equipment efficiencies

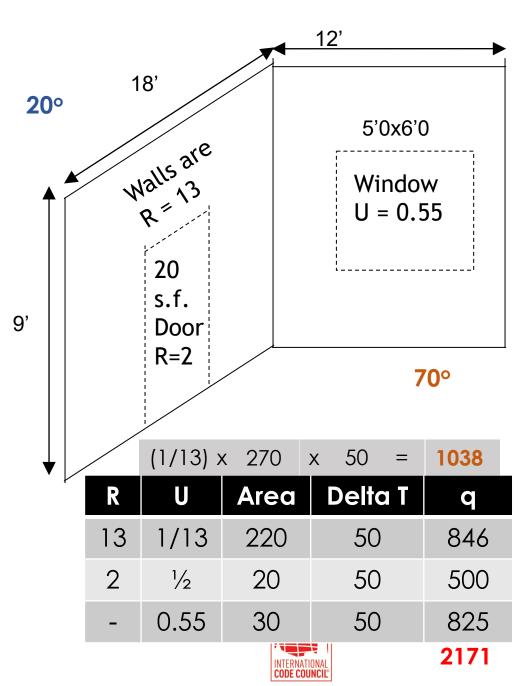
NEBRASKA Good Life. Great Resources.

- Specify code edition
- UA or Simulated Performance

Conduction Heat Flow

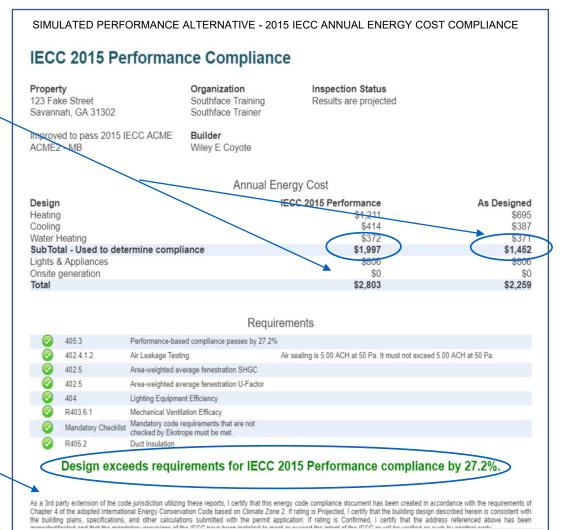
Heat transfer through a solid object: the formula for calculating conduction heat transfer is $q = U \times A \times \Delta T$

- q = heat flow (Btu/hr)
- U = inverse of R-Value [U=1/R, R=1/U] (Btu/hr ft² °F)
- A = area (square feet)
- ΔT = temperature difference across component (°F)


$$\mathbf{q} = \mathbf{U} \times \mathbf{A} \times \Delta \mathbf{T}$$

Manual J: $q = A \times HTM$

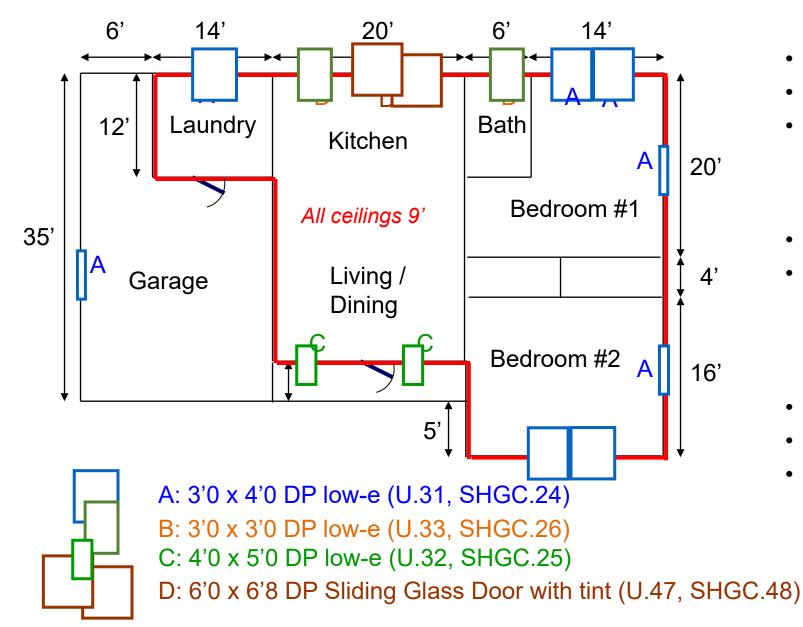
where HTM = Ux∆**T**



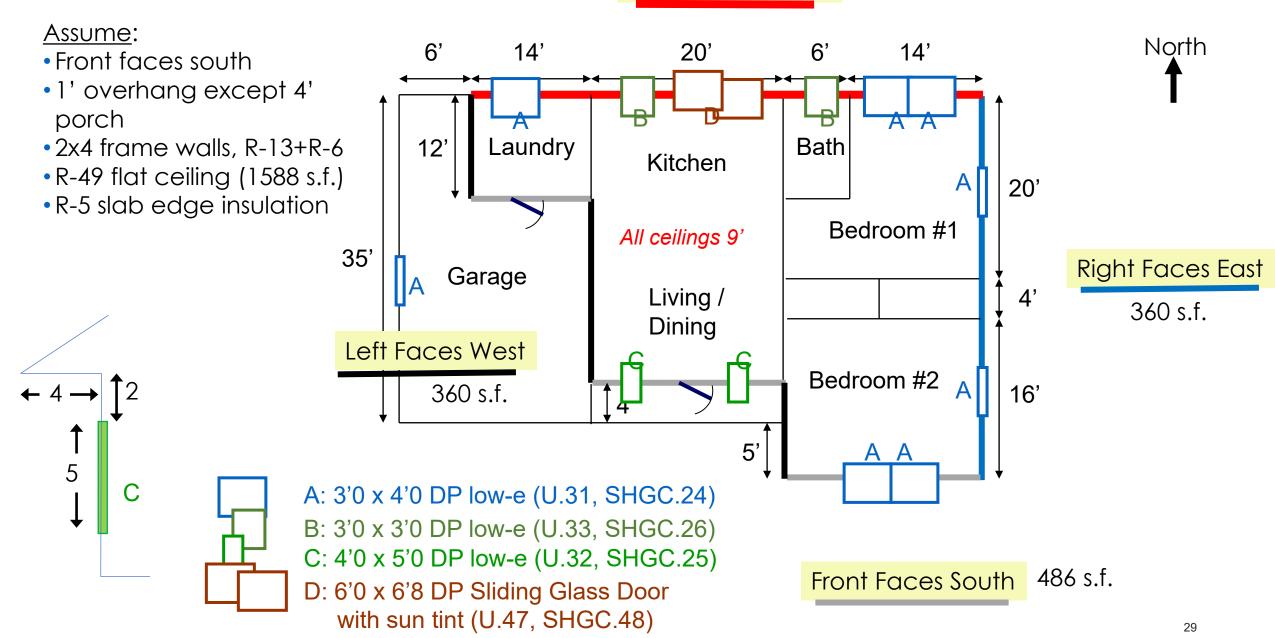
Section 405 Simulated Performance Alternative, Sample Report

- Annual energy usage simulation demonstrates that the proposed building's energy costs are <u><</u> "standard code" building
- No credit for mechanical efficiencies
- Likely to involve a HERS rater
- Ekotrope, REMrate & Energy Gauge are acceptable

- Compares total annual energy costs
 - Window U-factor and SHGC
 - Envelope and duct testing
 - Lighting, duct insulation
- Compares energy costs of actual home being built against 2015/18 IECC reference home's energy cost



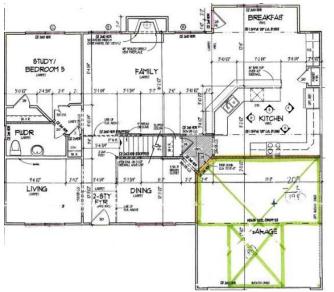
RESCHECK - Simple House


- Perimeter: 54x2 + 40x2 = <u>188</u> ft.
- Gross Wall: 188 x 9 = <u>1,692</u> sq. ft.
- Floor Area: 12x14 + 20x31 + 20x40 = <u>1,588</u> sq. ft.
 Ceiling Area: <u>1,588</u> sq. ft.
 Windows • A: 12 x 7 = 84 sq. ft.
 - B: $9 \times 2 = 18$ sq. ft.
 - C: 20 x 2 = <u>40</u> sq. ft.

Windows: <u>142</u> sq. ft.

- Glass Doors: 20 x 2 = <u>40</u> sq. ft.
- Solid Doors: <u>40</u> sq. ft. (R-3)
- Volume: 1588x9 = 14,292 c.f.

Simple House (1588 s.f.)

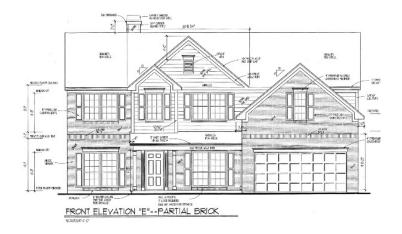

Back Faces North 486 s.f.

RESCHECK – ACME House

Second: 1,473 s.f.

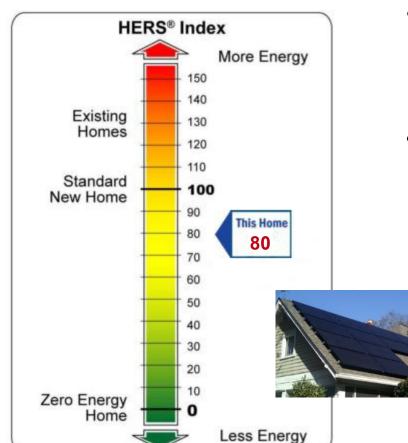
First: 1,343 s.f.

RESCHECK – ACME House Base Case Takeoffs


- Total cond. Floor area: <u>2816</u> s.f., Volume: <u>25,791</u> c.f.
- First floor area: <u>1343</u> s.f., slab on grade: **167' perimeter**, R-10. 2'
- Second level, floor over garage: 280 s.f., R-19
- Gross Exterior walls: 2578 s.f.
 - Net Exterior walls: 2170 s.f., R-20
- Gross Wall Adjacent to Garage: 257 s.f.
 - Net Wall Adjacent to Garage: 237 s.f., R-13
- Attic Kneewall: 420 s.f., R-13+R-5 continuous
- Windows (F,L,B,R): 157+22+177+12 = 368 s.f., U-0.30, SHGC-0.26
- Glass Door: 20 s.f., U-0.33, SHGC-0.30
- Front Door wood: **20 s.f.**, U-0.5
- Garage Door metal, foam core: **20 s.f.**, U-0.33
- Flat ceiling: **1220 s.f.**, R-49 Vaulted ceiling: **390 s.f.**, R-25

RESCHECK – ACME House Roofline Takeoffs

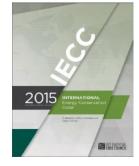
- Total cond. Floor area: <u>2816</u> s.f., Volume: 29,811 c.f.
- First floor area: <u>1343</u> s.f., slab on grade: **167' perimeter**, R-10, 2'
- Second level, floor over garage: 280 s.f., R-19
- Gross Exterior walls: 2578 s.f.
 - Net Exterior walls: 2170 s.f., R-20
- Gross Wall Adjacent to Garage: 257 s.f.
 - Net Wall Adjacent to Garage: 237 s.f., R-13
- Foamed Gable End walls: 744 s.f., R-20
- Windows (F,L,B,R): 157+22+177+12 = 368 s.f., U-0.30, SHGC-0.26
- Glass Door: 20 s.f., U-0.42, SHGC-0.30
- Front Door wood: **20 s.f.**, U-0.5
- Garage Door metal, foam core: 20 s.f., U-0.33
- Foamed Roofline (vaulted ceiling): 1986 s.f., R-20



ACME Base – 2816 S.F. Home in Ekotrope

- Two mechanical systems both in the vented attic
- 75% of 1st floor ducts inside; all others plus 2nd floor ducts in attic
- 80% furnaces, 14 SEER A/C's, no mechanical ventilation, 50 gal gas DHW
- Basic 2009 energy code compliant R-values (assume Grade III)
 - R-30 flat ceiling, R-19 vault
 - R-13 + OSB walls
 - R-19 floor over garage; no slab insulation
- Typical DP low-e windows: U-0.35 SHGC-0.30; poor orientation
- Duct leakage is 12% Total; 8% To Outside
- Envelope Leakage is 7 ACH₅₀, 0.45 ELR₅₀, <u>3009</u> cfm₅₀
- Elec rate 12.5¢/kWh + \$10 base fee; Gas rate 75¢/therm + \$20 base fee

HERS Rating Demonstration

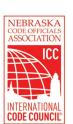


- Index drops to 71 • with 2012/15 IECC prescriptive envelope values
- Index drops to 67 when 2012/15 IECC prescriptive 75% efficient lighting values are entered
 - **80** => 70 with 2 kW

 - => 32 with 10 kW

- Index drops to mid-50's with condensing furnace, 16 SEER AC, and more efficient appliances
- House load drops (4 tons to 3 tons)
 - **57** => 49 with 2 kW
- => 56 with 5 kW => 36 with 5 kW
 - => 13 with 10 kW

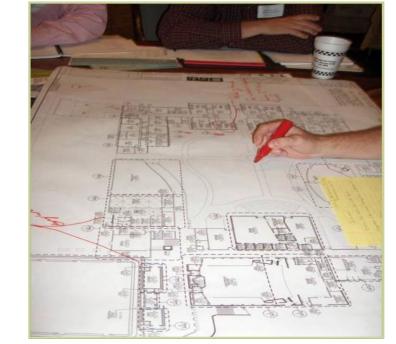
Energy Rating Index (ERI) path


• The ERI may allow more options in materials choice, technologies and innovative strategies than the simulated performance path

- The Energy Rating Index (ERI) path gives the most design flexibility (e.g., credit for mechanical equipment efficiency)
- It also credits items not covered by the code (e.g., appliance efficiencies)

How is the ERI determined?

- The ERI is a numerical integer value
- Lower index numbers indicate lower energy use
- The HERS Index is currently accepted for use as the ERI
- A HERS Index is generated from a HERS Rating using modeling software (e.g., Energy Gauge, REMRate, Ekotrope)
- HERS stands for Home Energy Rating System


HERS was developed by the Residential Energy Services Network (RESNET)

www.resnet.us

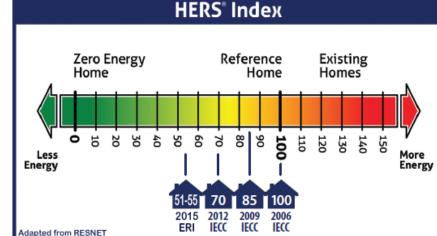
Determining the Energy Rating Index

- 1. Simulate two homes
- **Rated** Home what will be built
- Reference Home same home but exactly meets '06 code
- 2. Compare Annual Energy
- Space Heating & Cooling, Hot Water, Lighting and some Appliances
 - Multiply by 100 (lower w/ renewables)

Index = 100 x PE_{fraction} X [*Rated* Home's Htg + Clg + WtrH + L.A.] = 75 [*Refer*. Home's Htg + Clg + WtrH + L.A.]

70 20 30 80

30


40

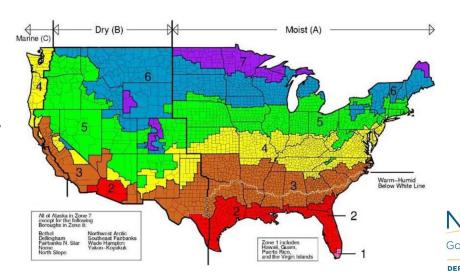
30

50

HERS / Energy Rating Index – What does it mean?

- HERS Index (lower is better)
- Rated home with Index of 100 = Reference home exactly meeting 2004/06 IECC

• Net Zero Energy Home = HERS Index of O

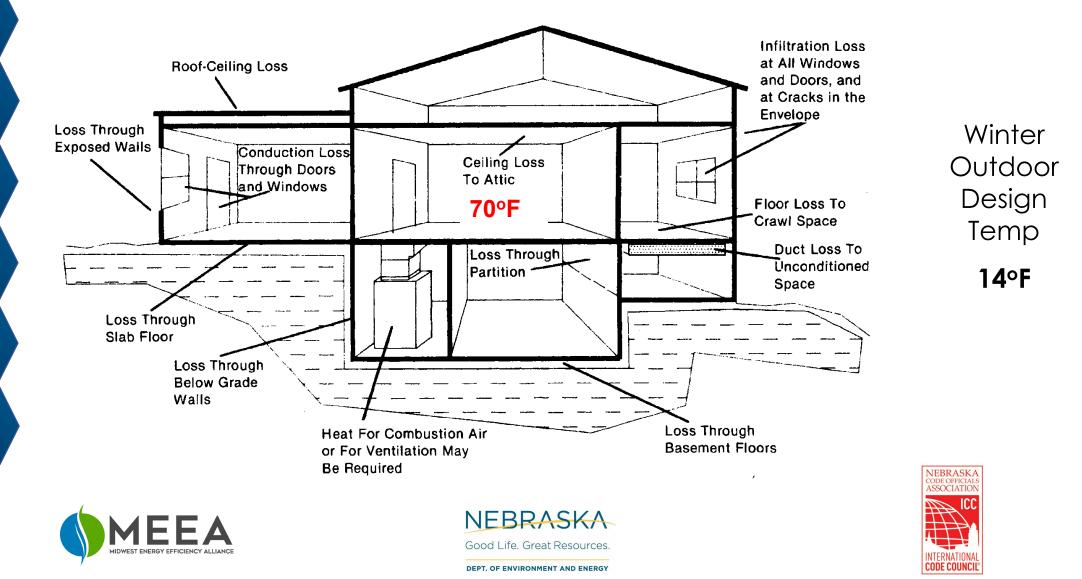


PE_{fraction} is ratio of renewables to purchased energy

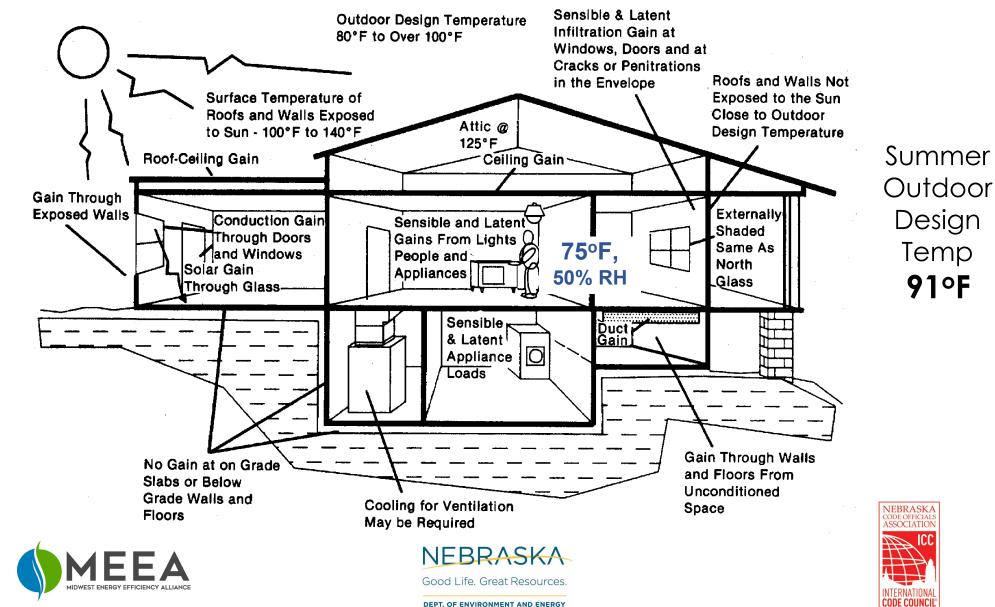
(e.g, a home that produces 20% of its annual energy would have a $PE_{fraction}$ of 0.8) In this example, 0.8 x 75 = **60**

Climate and Energy Efficiency

Design Temps	<u>W/S</u>
Atlanta	24/92
St. Louis	14/91
Fairbanks	-40/78
Miami	51/90


Design Temperatures

- Heating, for 99% of the season the outdoor temperature is above this value
- Only 1% of the Cooling season is hotter than this temperature value
- Design Temp Example
 - St. Louis Winter $70 14 = 56 \text{ F} \Delta T$
 - St. Louis Summer 91 75 = 16 F Δ T
- Load Calcs & Energy Code
 - IECC 2009 Section 302.1: Interior design temperatures (72°F heating, 75°F cooling)
 - MUST BE ACCURATE



Manual J - Winter Loads

Manual J- Summer Loads

Sizing the System

"Heating and cooling equipment shall be sized in accordance with Section M1401.3"

"Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies." - 2015 IECC R403.7

- Building orientation
- Glazing, walls, foundation & roof
- Design conditions
- Infiltration
- Internal loads
- Ventilation load

Manual J Software

	Right-Suite Residential J8 - [Lanigan-Cape-Cod.rrp: Loads Worksheet] X Elle Edit View Show Drawing Options Window Help X														
2 2 2 2 2 2 2 2															
Right-J8 Worksheet						<<	<	; pi	rev zone	next z	one	>	>>		
1 2	2 Exposed wall						Entire House 172.0 ft				Basement z 172.0 ft				
34		ACCA Ceiling height Room dimensions					10.0 d			10.0 p					
5		MANUAL J8		Room area HTM			1741.6 ft ² Area (ft ²) Load			1741.6 ft ² Area (ft ²)			Load		
	Construction Ty number		U₋ value	Or		ıh/ft²)	or perim			tuh)	or perim			uh)	
		Select any cell then click here		•••	Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool	
6	W	12C-6bw	0.060		2.820	0.759	0	0	0	0	0	0	0	0	Þ
	ល ស	15B-0c-6 12C-6bw	0.488	ne se	13.07 2.820	2.996	523 0	523 0	6834 0	1567 0	523 0	523 0	6834 0	658 0	
	W	15B-0c-8	0.488		8.986	1.498	333	333	2992	499	333	333	2992	343	
11	ស	12C-6bw	0.060	sw	2.820	0.759	0	0	0	0	0	0	0	0	
	ឃ	15B-0c-6	0.488		13.07	2.996	523	523	6834	1567	523	523	6834	1332	
	ល	12C-6bw	0.060		2.820	0.759	333	209	588	158	333	209	588	132	
	G G	1D-c2ow	0.550		25.85	34.40	83 41	0 0	2157 1156	2871 743	83 41	0	2157 1156	6231 1482	
	G C	10B-w 16B-28md	0.600	nw -	28.20 1.598	18.13	41	0	1156	/43 0	41	0	1136	1402 N	
	F	22A-vpm	1.180	-	55.46	0.000	330	55	3050	0	330	55	3050	0	
	F	21A-28t	0.022	-	1.034	0.000	1411	116	1459	0	1411	116	1459	0	
				\vdash											-
	Tet	al room load							32493	9408			32493	12629	
		required (cfm)							467	467			467	627	

Why is proper equipment sizing important?

- Equipment first-cost
- Longer/more efficient run times
- Limits equipment cycling
- Better dehumidification

Key Takeaways

- 2018 IECC has new requirements for:
 - Air sealing
 - Duct sealing
 - U-Factor
 - R-Values
 - Performance Testing
 - Good Alternative Methods!
- Controlling moisture is critical
 - Proper air sealing is key
 - Right-sizing HVAC is required
 - Mechanical ventilation must be installed and takes on new importance

Trainings in September:

9/1 Today "Live" 3-5pm NDEE 245 Fallbrook Blvd., Lincoln NE

9/13 & 14 "Live" for Nebraska ASHRAE Chapter: ASHRAE 90.1 (as referenced by IECC 2018)

9/15 Nebraska Energy Collaborative "live" 9:30-11:30 (NDEE, Lincoln)

MCC Commercial Energy Code Certificate Course **Tuesday Evenings 9/27-11/15** – Online and in-person

Trainings in October

10/5 Commercial Energy Code: Advanced Mechanical Systems - Online

10/12-14 Duct & Envelope Testing "Train the Trainer" Live all day (NDEE Lincoln)

10/25-26 DET Testing Certification Lincoln area (Need two test homes)

More to be announced!

Phone Survey

- Our research partner Eric Boria is currently conducting a phone survey with Nebraska stakeholders to better understand issues people are having complying with the 2018 IECC and hear about what resources have been helpful.
- We would love to hear from you and anyone else in the state who could share information.
- This feedback will help improve the Nebraska Energy Code Training Program to best serve those working with energy codes in the state.

Thank you! Questions?

Matt Belcher, Verdatek Solutions <u>matt@verda-solutions.com</u> Cell: (314) 749-4189

Corie Anderson, MEEA <u>canderson@mwalliance.org</u>

DEPT. OF ENVIRONMENT AND ENERGY

