2023 MO COMMERCIAL ENERGY CODE TRAINING

Commercial Envelope

🕸 Southface

INTRODUCTIONS

Mike Barcik

mikeb@southface.org www.southface.org

Matt Belcher MO Energy Code Support Matt@verda-solutions.com

Mike Barcik – Technical Principal mikeb@southface.org

Matt Belcher – Code Consultant Matt@verda-solutions.com

INTRODUCTIONS

Mike Barcik mikeb@southface.org

Matt Belcher matt@verda-solutions.com

3

🕸 Southface

ABOUT SOUTHFACE

Building Science & Energy Code

🔅 Southface

BUILDING SCIENCE FUNDAMENTALS

Understand Building as a System

Control Flow of

- Heat
- Air
- Moisture

The **building thermal envelope** separates conditioned space from unconditioned (or outside) and consists of two elements: an air barrier and insulation that must be continuous and touching

HEAT TRANSFER CONCEPTS

Heat always moves from a warmer place

to a cooler place

Types of Heat Transfer

- Radiation heat flow from hot to cool surface
- Conduction heat flow through solids
- Convection heat flow through fluids

BUILDING SCIENCE: HEAT TRANSFER

- Heat is a form of energy
- · Heat moves from hot to cold
- 3 methods of heat transfer:
 - Radiation: Heat emits from a hot surface or hot object, e.g. hot coals
 - Conduction:
 Heat moves through a material by contact, e.g. the grill grates
 - Convection:

Heat energy carried by a fluid, e.g. the air inside the covered grill

AIR LEAKAGE: DRIVING FORCES

Three forces create pressure differences in a building:

- Wind
- Stack Effect
- Mechanical Fans

🕸 Southface

PRESSURES / DRIVING FORCES

Wind

Air leaks across envelope assemblies driven by the pressure differential due to wind

Air enters the building on the windward side (infiltration) and exits on the leeward side (exfiltration)

PRESSURES / DRIVING FORCES

Stack Effect

- The stack effect causes air movement due to the buoyancy of heated air
- The greater the thermal difference and the height of the structure, the greater the buoyancy force

STACK EFFECT

PRESSURES / DRIVING FORCES

Mechanical Fans

Mechanical fans in a building can create significant pressure differences which drive air exchanges.

MOISTURE

🗱 Southface

BUILDING SCIENCE: MOISTURE TRANSPORT

- Moisture moves from wet to dry
- Liquid water flows downhill (but can be wicked up)
- Water vapor diffuses from high concentration to lower concentration
- Air movement can carry lots of humidity

FORMS OF MOISTURE FLOW

LIQUID and

VAPOR

Bulk

Liquid water (rain, drainage, plumbing leaks)

Capillarity

Wicking through porous materials (concrete, wood, paper drywall, fiberglass and cellulose insulation)

Diffusion

Molecules of water moving through porous materials

Infiltration

Moisture laden air brought into the house

🗱 Southface

MANAGING BULK MOISTURE

- Foundation waterproofing
- Proper site drainage

👙 Southface

- Gutters channel water away from foundation
- Drainage planes with proper flashing in walls allows water to escape (e.g. behind brick)

VAPOR DIFFUSION VS. AIR LEAKAGE

VAPOR DIFFUSION RETARDERS

🗱 Southface

🗱 Southface

MO is CZ4-5 Southface

HOW ARE ENVELOPE REQUIREMENTS DETERMINED?

Requirements for building energy codes are linked to the dominate climate within a given jurisdiction, determined by a 30-year average of local surface observations.

Note: Climate zones change! Climate zones change! ASHRAE 90.1-2019 & IECC 2021 have important changes, including a new climate zone (CZ0) and shifts in county designations.

WHAT IS THE BUILDING THERMAL ENVELOPE?

These assemblies can comprise the building thermal envelope if they **separate conditioned from unconditioned space or outside air**

- Roof/Ceiling Assembly
- Wall Assembly
- Vertical Fenestration and Skylights
- Floor Assembly
- Slab Edge
- Below-Grade Wall Assembly

🗱 Southface

ASHRAE

SPACE CONDITIONING CATEGORIES

Envelope requirements are specified by space-conditioning categories Conditioned space must be:

- a cooled space with a cooling system sensible cooling output capacity larger than 3.4 Btu/h·ft² of floor area
- a heated space with a heating system output capacity larger than that specified in table provided
- Or, an **indirectly conditioned** space

Climate Zone
0, 1, 2
3А, 3В
3C
4A, 4B
4C
5
6
7
8

CONDITIONED SPACE

SPACE CONDITIONING CATEGORIES

Separate envelope component requirements apply to three types of conditioned spaces

- 90.1: Nonresidential IECC: "All other"
- 90.1: Residential IECC: "Group R"
- 90.1: Semiheated spaces are heated, but not to comfort levels, and not cooled.
 (Only if approved by the building official – Uncommon)

(Only if approved by the building official - Uncommon)

			ASHRA
SEMI-EXTE	ERIOR ENVELOPE		
	Exterior Envelope Semi-Exterior Envelope		
100			
	Ventilated Attic	Semiheated Storage	
		Semiheated Storage Conditioned Space	
	Unconditioned	Conditioned Space Ventilated	
		Conditioned Space	
*11	Unconditioned Space	Conditioned Space Ventilated Crawlspace	
*/E	Unconditioned Space	Conditioned Space Ventilated	ed

SPACE CONDITIONING CATEGORIES

A semiheated space has a heating system with a capacity \geq 3.4 Btu/h.ft² of floor area but is not conditioned space

Spaces are assumed to be conditioned space and comply with requirements of conditioned space at time of construction regardless of whether the mechanical or electrical equipment is included in the building permit application or installed at that time

Exceptions:

Space is designated as semiheated or unconditioned and approved as such by the building official

🕸 Southface

ASHRAE

COMPLIANCE OPTIONS

- Mandatory provisions apply to all compliance pathways
- Prescriptive is a recipe that you have to follow
- Other pathways require energy modeling

COMPLIANCE OPTIONS - PRESCRIPTIVE

Building must comply with

- C402 Envelope
- C403 Mech
- C404 SWH
- C405 Lighting
- Plus pick one additional efficiency package

1.000		
1000	Personal Indiana	
32.35	Southface	ľ
- 100	the statement of a statement.	-

Here we have a second sec

ADDITIONAL EFFICIENCY PACKAGE OPTIONS

One additional efficiency feature must be selected to comply with the IECC

- C406.2 More efficient HVAC performance, OR
- C406.3 Reduced lighting power density system, OR
- C406.4 Enhanced lighting controls, OR
- C406.5 On-site supply of renewable energy
- C406.6 Dedicated outdoor air system (DOAS), OR
- C406.7 More efficient SWH (hot water) OR
- C406.8 Enhanced envelope performance OR
- C406.9 Reduced air infiltration

COMPLIANCE OPTIONS - PERFORMANCE

C407 Total Building Performance

- Building energy cost to be less than 85% of standard reference design building
- C402.5 Air Leakage
- C403.2 Provisions applicable to all mechanical
- C404 SWH
- Mandatory Lighting C405.2, C405.3, C405.4, C405.6

🕸 Southface

INSULATION – PRESCRIPTIVE REQUIREMENTS

MANDATORY PROVISIONS - INSULATION

- Insulation must be in <u>substantial contact</u> with inside surface in a permanent manner
- No loose-fill insulation in attic when ceiling is steeper than 3:12 slope
- Dams & baffles at eave vents to deflect incoming air
- Recessed equipment effect on insulation
- Insulation protected from sunlight, moisture, landscaping operations, equipment maintenance, and wind
- Stagger joints of multilayered rigid insulation

CLIMATE	2.44	ND 1		2	Q 44	2	4 EXCEP	TMARINE	8 AND 1	ARME &	- C.	s		
20%E	All Uther	droup R	AT UTHER	Group R	All other	Group R	All other	droup #	All other	droup #	All other	droup #	All other	drow
				10			Reefs	-						N CO
Insulation pricely above roof deck	8-2011	8-250	8-250	R-250	8-250	6-250	8-500	8-300	8-550	R-100	8-500	8-390	8-360	8-350
Metal buildings ^a	8-19+ 8-1113	8.15+ 6-1113	8-19 + R11 LB	8-19 + R-11 LS	8-19 × 8-11 LB	8-19+ 8-1115	8-19 × 8-11 LB	8-19 × 8-11 LS	8.19+ 8.1115	8-19+ 8-1115	8-25 × 9-1118	8-30 + R-11 LS	8-30 + 9-1118	8-30 + 8-1113
ATIX and other	8.58	8-28	9.58	8.38	8-38	9.44	8.45	9.49	8.40	9.49	8.43	9-43	9.42	8.60
							Northe, attrove	grade						
Mass?	8-5 NF	16.6.707	8-0.00	PL7.50	8.7.60	84.50	8.6.50	10.11.40	1611-40	8-13.36	8-15.50	816.00	8-15-20	16-16-262
Unital Invitting	8-13+ 8-6.50	8,55+	R13+ 8-6.50	R-13 + R-130	8-13+ 8-6.50	R-13+ R-130	R-13+ R-130	R-12 + R-140	8-13+ 8-140	R-13 + R-140	8-13+ 8-140	8-13 × 8-140	8-13+ 8-170	R-13 + R-19 30
Una harved	8-13+ R-80	8-12+ 8-80	44-13+ (8-50)	8-13 + R-7 50	8-12+ 8-7-50	8-12+ 8-7.50	8-12+ 6-7-54	8-12+	6-13+ 8-103	R-13 + R-100	-8-13+ R-12-90	8-12 × 8-12 htt	46-13 + R-12.001	8-13+
rand Samed and ather	8-13 + 8-3.8cr or 8-20	8.12 + R-1 Scilor 8-20	8-1) + 8-3.80 or 8-20	8-10 + 8-3-6ci or 8-20	8-13 + R-3 Sci or R-20	8-13 + 8-3.5ci ar 8-20	8-13 + R-3 5ci or R-20	8-13+ 8-340 m 8-20	8.13 + 8-7 5ci ar 800 + 83.80	8.13 + 8-7 Sci or 8-20 + 8-3.80	8.13 + 9.7 Sci or 8.23 + 8-3 Sci	8.13 + 8.7 Sci or 8.20 + 8.3 Sci	8-13 + 8-7 Sciller 8-35 + 8-3 Sci	8.13 + 8.7 5cl o 8.20 + 8.3 5cl
		0			0		Walts, Bellow	grade	2		0 V			
bette glade	NR	- 14	MI	M	NE	- 10	87.50	8.100	87.50	A-100	8-100	8.150	8-150	6.150
							Floors				the second second			
Ulase*	NR	APR .	R-630	9-8-50	R-100	R-100	H-14.6ct	8-16.75	H-14.6ct	8-16.75	4.16.70	8.16.75	9-20 lict	R-20.9d
Justanny	B-13	0.13	R-55	9.20	8.32	4.30	8.30	H-30	H.30	H-30 F	0.28	44.58	8.28	41.28
						Section 1	lab-on-grad	e tipors	1.100.00		Sec. 1	month.	Section 2	nu.
Orinelativit status	- 54	145	-	NR	149	32-10 fb/ 23* bette	6-13 for 24" Dettine	R-15 for 21* below	8-15 fbr 24' Delter	31-20 for 21* better	0-20 fter 24* betow	18-20 ft/ 45° berow	8-20 for 24" betow	10-20 for 40° ben
reated status?	8-7.5 for 12* Setton + 8-3 full state	R-7.5 for 12* better + 8-5 for state	8-7.5 tpr 12* Settion + 8-3 tult state	8-5.5 tp 12" below 11-5 AV siab	12-10 for 23* better + 12-5 full etable	2010 for 24" Setow + 505 full state	R-10 for 24* better + 85.5 full state	8-15 for 31° 64004 + 5-5 foil state	72-13 for 36° better 4.92-5 follow elab	10-15 for 30° below + 0-5 foll state	R-13 for 00° bette + IE-5 full elati	10.00 for 40° Sellow + 50.5 full state	R-20 Re 80° Dettisi + IE-5 Nati + IB-5 Nati	8-30 for all" Selles + 5-2 for all all

OLIMATE ZONE	0 AND	CAND 1			1		4 EXCEPT MARINE	S AND MARINE 4	•		1		ΠJ	þ.		
	All other	Group R	All other	Group R	All other	Group R	All other	Group 8	All other	Group R	All other	Group R	All coher	Group C R	DOE COUNCE	Group R
Second second second	- 8		2	2	1 - E	2 0	Roofs				- 13		0	8		
Insulation entirely above sost deck	0.000	U-8.029	0-0.039	0-0.029	U-0.039	U-0.008	U-0.032	U-0.032	0.0.002	U-0.032	U-0 032	0-0102	U-0.028	U-0.028	U-0.129	U-0.02
Metal buildings	0-0-005	U-0.055	U-0-035	U-8.635	U-0.055	U-0.055	U-0-035	U-6 kan	U-0-055	U-0 018	U-0 031	U-0.029	n-9 cta	U-0.029	U-0-026	U-8.83
Attic and other	U-8 627	040027	10-0.007	0.0.027	0-6.027	0-0.027	U-0.021	U-0.021	1240.001	U-0.021	U-6 021	04421	U-0.017	U-0.017	U-8-847	0.001
						W	ris, above (yrade								
Many	SAE 191	U-0.501	10-0 151	0-0 125	0-0.123	U-0.104	0-0-104	U-0.090	U-0-090	U-0.000	U-0.080	10-8-571	U-0.011	U-0.071	U-8-007	040.00
Metal building	VIC CTS	10-0.0F%	10-6-679	0.0.079	U-0.579	U-0.652	10.0.082	13-0.090	144.000	12-0.080	U-6 080	10-8-090	0.0.044	U-0.009	U-0.039	0-0.0
Metal trained	U-8 877	U-6 077	10-0.677	10-0.964	U-0.054	0-0.064	U-0.064	13-0.064	540.055	U-0.058	U-0.049	12-0.049	U-0.049	U-0.042	0-6.997	0-8.0
roos harves and other?	0.0064	0-0.064	0-0.064	U-0.064	10.0.064	10-0.064	0.0.064	0-0.064	0-0.061	U-0.051	U-D DET.	U-8.681	10-0.051	U-0.055	U-0.002	9.0.0
						W	Its. below (prade								
Bette-plate wat*	1.140*	1.140*	1.147	1.140*	1.147*	1.140*	cam	C-0.012	C-0 118	C-0.082	C-0.042	C-0.083	C-0.063	C-E 053	C-0 063	C-8.0
							Floors						2			2
Alexa ²	0.932*	0.522*	10-0,107	10-0-087		10.0074	0-0.857	W-0.051	u-0.057	U-0 001	0-0-011	U-0.051	U-0.042	U-0.042	U-0.038	uest
Joothaning	U- 0.066*	0.064*	U-0.000	U-0 000	U-0.033	0-0.013	U-0 600	U-0.000	u-0.023	U-0 033	U-8-027	0-0-027	U-0 027	U-0 007	0-8.827	U-0,03
and the second s			deres a	1		\$10	o-on-grade	ficers			1000		1.000		1	
Unbeated slabs	P-0.73*	P-0.73*	1-1.73*	6-0.78*	8-0.73*	7-0.34	P-8-82	中央部	P-0.52	P-0.51	P-0.51	P-8 434	7-0.51	P-0.434	7-0.434	P-0.40
Heated state	7-0.68	10.68	7-0.89	P-0.69	F-0.06	1-0.66	P-0.62	F-0.62	F-0.62	P-0.62	P-0.52	7-0.602	P-0.602	1-0.002	F-0.002	P-0.9
							Opeque do	orm								
Nonswinging door	0-0.31	0.0.31	0.0.31	0.0.31	U-0,31	0.031	U-0.51	0.031	U-6.31	0-0.21	0.0.21	0.031	00.31	0-0.31	U-0.31	9.63
Swinging door®	U-0.37	U-0.57	Ų-0.97	U-0.97	U-0.97	U-0.07	U-0.97	0-0.37	10-0.07	U-0.5T	U-0.57	0-0.37	040.37	U-0.37	U-0.37	946.3
Carage door + 14% gratesj#	U-0.31	0.0.31	U-0.21	0-0.31	U-0.31	U-0.31	U-0.31	U-0.31	0.031	0.0.31	0.0.21	0.031	U-8.31	0.0.31	U-0.31	0.43

ASHRAE 90.1-2019 ENVELOPE REQUIREMENTS CLIMATE ZONE 4

All subscriptions Automation -We brandation Ante No. 6 490 å fy Insulation haulation antholy above also U-8002 H-30-cl 0-0.008 R-30-c.i. U-0-085 B-10-01 0-8387 B-15 + B-11 (arer B-25 + B-84 (a 0-0.007 R-19 + R-11 Law 9-25 + R-8 La U-0.092 PL18 Metarbuilding* Attic and other U-0.021 R-46 U-0.021 R-49 U-0.004 PI-30 Nals, atowe Grade U-0104 - MASci. 0.0.000 B15.4 cl. U-0.080 NR Manu Mater building U-8000 R-0+R-15.8cl U-0.000 8-0 + R-18-ci U-0.162 R-13 bares terms U-0.084 9-13 - 9-75 -L UG.064 8-12+8-73-61 U.0.124 R-13 U-0.064 R-13 + R-8.8 ±1. # R-20 U-0.004 R-13+R-3.8 cl. #R-20 U-0.089 P-13 od harrest and Wall below Grade Below-grade wolf 04119 B7.844 0.0.00 R-10-ci D-1.140 NR Figures Adapter U-DOIT R-MARCE U-0.001 R-16.7 cl U-0.107 R-0.3 cl. U-0.038 PL00 U-5.008 Pi-30 Daved Joseff U-0.052 R-18 U-0.033 Pi-30 U-6028 P-30 U-0.001 P-18 od-framed and POST NIShrakin F-0.520 R-15 hr 24 in. F-0.730 NR int' F-0.843 R-20 tor 24 in. F-5.488 F-20 for 48 in. F-0.900 R-10-tor 24 m. pagesi 20046 U-8.870 04376 U-6.370 Swinging U-0.010 U-0.310 U-0.560 Verseingeng

Table 5.5-4 duilding Envelope Requirements for Climate Zone 4 (A.B.C)*

MANDATORY PROVISIONS - INSULATION

METAL BUILDING ROOF INSULATION

Good – Has *thermal spacer block* to slow down thermal bridging

Better – Has thermal spacer block and the cavity is filled with insulation

Diagrams courtesy of North American Insulation Manufacturers Association (NAIMA)

🔅 Southface

INSULATION

INSULATION

Substantial contact?

ENVELOPE MINIMUM REQUIREMENTS

Poor wall insulation detail

ENVELOPE MINIMUM REQUIREMENTS Good wall insulation details

ENVELOPE MINIMUM REQUIREMENTS

Good wall / floor insulation details

🔅 Southface

- ICF's are resource efficient & reduce waste
- Cost effective alternative to light gauge steel
- 40% recycled fly ash and slag to "green" the concrete

ROOFS

🕸 Southface

UNACCEPTABLE ROOF DESIGN

Batts over suspended ceiling tiles

Poor pressure boundary caused by tile grid, porous tiles, lighting vent holes

Poor durability – maintenance disrupts batts, exposure to fiberglass dust

Many thermal breaks due to ductwork, light fixtures, grid and support wires

SUSPENDED CEILINGS

The roof insulation shall not be installed on a suspended ceiling with removable ceiling panels.

🕸 Southface

GOOD ROOF DESIGN

Insulation above hard ceiling

Example: taped gypsum; similar to residential construction

Ductwork is inside but must limit and seal HVAC, plumbing, and electrical penetrations through pressure boundary

Thermal bridging from metal roof trusses

BETTER ROOF DESIGN

Spray foam insulation against underside of roof deck

Minimal thermal breaks and continuous pressure boundary HVAC equipment and ductwork located within

• Good durability

🗱 Southface

• Preferred for retrofits

CASE STUDY - PRESCHOOL

Sprayed foam to R20 against underside of roof deck (+ new lighting fixtures) <u>HVAC load reduced 33%</u>

BEST ROOF DESIGN

Rigid insulation above roof deck

No thermal breaks and continuous pressure boundary HVAC equipment and ductwork located within conditioned space Good durability

🗱 Southface

INSULATION ABOVE ROOF DECK

- Insulation considered continuous
- Continuous insulation board to have > 2 layers and the edge joints between each layer shall be staggered.

PEACHCREST COMMUNITY CENTER

78

🗱 Southface

HYBRID INSULATION APPROACHES

IRC

00

IRC/IBC 806.5 UNVENTED ROOF ASSEMBLIES

 To reduce risk of condensation, install a certain amount of "airimpermeable" insulation before using an "airpermeable" product in an unvented roof assembly

Instantion for compensation contract						
OLIMATE SOME	MINIMUM RIGID BOARD ON AIR-IMPERMEABLE INSULATION R -VALUE ^{1, 5}					
2B and 3B tile roof only	0 (none required)					
1, 2A, 2B, 3A, 3B, 3C	R-5					
4C	R-10					
44, 48	B-15					
5	R-20					
6	R-25					
7	R-30					
8	R-35					

TABLE R806.5

a. Contributes to but does not supersede the requirements in Section N1102.

b. Alternatively, sufficient continuous insulation shall be installed directly above the structural roof sheathing to maintain the monthly average temperature of the undenside of the structural roof sheathing above 45°F (PC). For calculation purposes, an interior air temperature of 68°F (20°C) is assumed and the exterior air temperature is assumed to be the monthly average outside air temperature of the three coldest months.

🔅 Southface

Southface

TABLE 5.5.3.1.1 – INCREASED ROOF INSULATION VALUES

Roots	Nonresidential		Residential			
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value		
Climate Zone 0						
Insulation entirely above deck	U-0.027	R-36 c.i.	U-0.027	R-36 c.i.		
Metal buildings	U-0.028	R-35				
Climate Zones 1 to 3						
Insulation entirely above deck	U-0.030	R-33 c.i.	U-0.029	R-34 c.i.		
Metal buildings	U-0.028	R+35				

👙 Southface

ROOF OPTIONS - IRMA

Result is extended life of roof membrane

VEGETATIVE ROOFS

UNINTENTIONAL GREEN ROOFS

AIR BARRIER

🐝 Southface

CONTINUOUS AIR BARRIER

Continuous air barrier required except in:

- Semiheated spaces in climate zones 0-6
- Single wythe concrete masonry buildings in climate zone 2B

The air barrier shall be designed and noted

- Air barrier components identified or noted in construction documents
- Joints, intersections, and penetrations of air barrier components (incl. lighting fixtures) detailed
- Air barrier must extend over all surfaces of building envelope at lowest floor, exterior walls, and ceiling or roof
- Designed to resist positive and negative pressures from wind, stack effect, and mechanical ventilation

AIR BARRIER MATERIALS

Materials that have an air permeance not exceeding 0.004 cfm/ft² under a pressure differential of 0.3 in. of water (1.57 psf) when tested in accordance with ASTM E2178. The following materials meet these requirements:

Material	Thickness
	(minimum)
Plywood	3/8 in.
Oriented strand board	3/8 in.
Extruded polystyrene insulation board	¹⁄₂ in.
Foil-faced urethane insulation board	¹∕₂ in.
Exterior gypsum sheathing or interior gypsum board	¹∕₂ in.
Cement board	¹∕₂ in.
Built up roofing membrane	
Modified bituminous roof membrane	
Single-ply roof membrane	
A Portland cement/sand parge, stucco, or gypsum plaster	¹⁄₂ in.
Cast-in-place and precast concrete	
Sheet metal	
Closed cell 2 lb/ft ³ nominal density spray polyurethane foam	ıin.

Southface

AIR BARRIER INSTALLATION

The following areas are to be wrapped, sealed, caulked, gasketed, or taped:

- Joints around fenestration and door frames (both manufactured and site-built)
- Junctions between walls
 - And foundations
 - At building corners
 - And roofs or ceilings
- Penetrations for roofs, walls, and floors
- Building assemblies used as ducts or plenums
- Joints, seams, connections between planes, and other changes in continuous air barrier materials

RECESSED LIGHTING

All recessed luminaires installed in the building thermal envelope must be IC rated and have the following:

- Sealed with gasket or caulk between housing and interior wall or ceiling covering
- Labeled in accordance with ASTM E 283 to allow ≤2.0 cfm of air movement between conditioned and unconditioned spaces

Southface

MAJOR AIR LEAKAGE LOCATIONS

- Cavities above suspended ceilings
- Plenum return spaces (Highly depressurized)
- Ventilated walls
- Equipment tunnels and chases
- Mechanical rooms and mezzanines
- Unconditioned adjacent space (storage, plant, warehouse, etc.)

AIR SEALING IS MANDATORY

Roof leak or something else?

NO OR POOR QUALITY AIR SEALING

GETTING BETTER

🕸 Southface

HOW TO ASSESS AIR SEALING

VERIFYING AN ENERGY EFFICIENT BUILDING ENVELOPE

 $\frac{\mathsf{ELR}_{75}}{\mathsf{shell area}}$

 $ELR_{75} \le 0.40$

Blower Door Testing – Recognized by IECC

- Prove Air Sealing
- Envelope Integrity

C402.5 Air leakage—thermal envelope (Mandatory). The thermal envelope of buildings shall comply with Sections C402.5.1 through C402.5.8, or the building thermal envelope shall be tested in accordance with ASTM E 779 at a pressure differentiated of 0.3 inch water gauge (75 Pa) or an equivalent method approved by the code official and deemad to comply with the provisions of this section when the tested air leakage rate of the building thermal envelope is not greater than 0.40 chatbe² (0.2 L/s · m²). Where compliance is based on such testing, the building shall also comply with Sections C402.5.5, C402.5.6 and C402.5.7.

MULTI-BLOWER DOOR – ENVELOPE LEAKAGE TEST

BONUS - REDUCED AIR INFILTRATION

Air infiltration verified by whole-building pressurization test

- Per ASTM E779 or ASTM E1827
- By an independent third party

Measured air-leakage rate not to exceed 0.25 cfm/ft² under pressure differential of 0.3 inches w.c. (75 Pa), with calculated surface area the sum of above- and below-grade building envelope

Submit report to code official and building owner, including: tested surface area, floor area, air by volume, stories above grade, and leakage rates

Exception: Buildings over 250,000 ft² of conditioned floor area don't need testing on whole building, can test representative above-grade sections. Tested areas to total not less than 25% of conditioned floor area and tested per C406.9

BUILDING ENVELOPE

Case Study Overview

- Dining Hall

 One Story; <u>4,615 sf</u>; climate zone 3A
 SFBE <u>14,668 sf</u>; CMU with brick veneer
- House of Worship

 One Story; <u>12,864 sf</u>; climate zone 3A
 SFBE <u>36,845 sf</u>; metal stud with EIFS

BUILDING ENVELOPE

Findings of Case Study

- Dining Hall
 - VE effort to save on materials led to increased cost and time on new envelope solution
 - Following manufacturer material installation recommendations did not always happen

BUILDING ENVELOPE

🕸 Southface

BUILDING ENVELOPE

Findings of Case Study

- House of Worship
 - Designate materials that will act as air barrier
 - Create material transition location details to link one air barrier material to the next

🕸 Southface

UTILITY CHASE

🗱 Southface

HOW TO GET FOG IN THE RIGHT PLACE

🐝 Southface

RTU ENVELOPE PENETRATIONS

RTU ENVELOPE PENETRATIONS

Wall and roof penetration require sealing at curb and equipment

🕸 Southface

ROOF MEMBRANE CONNECTIONS

🗱 Southface

PARAPET LEAK

LOADING DOCK WEATHERSEALS

ASHRAE 90.1 2019

Exception – Climate zones 1-3

IECC 2021

No exceptions for warmer climate zones

VESTIBULES

Required for both codes with many exceptions

The taller the building, the greater the need for vestibules

Both codes vary greatly on requirements based on zones and other inputs

🗱 Southface

VESTIBULES

Vestibules must have

- Self-closing doors
- Interior and exterior doors not open at the same time
- Distance between interior and exterior doors not < 7 ft when in closed position
- Floor area of each vestibule to not exceed the greater of 50 ft² or 2% of the gross conditioned floor area for that level of the building
- Exterior envelope of conditioned vestibule comply with *conditioned space* requirements
- Interior/exterior envelope of unconditioned vestibule comply with *semiheated space* requirements

🔅 Southface

VESTIBULES DETAILS

Building entrances shall be protected with an enclosed vestibule, with all doors opening into and out of the vestibule equipped with self-closing devices. Vestibules shall be designed so that in passing through the vestibule it is not necessary for the interior and exterior doors to open at the same time. The installation of one or more revolving doors in the building entrance shall not eliminate the requirement that a vestibule be provided on any doors adjacent to revolving doors.

VESTIBULES EXCEPTIONS

- 1. Buildings in Climate Zones 1 and 2.
- 2. Doors not intended to be used by the public, such as doors to mechanical or electrical equipment rooms, or intended solely for employee use.
- 3. Doors opening directly from a sleeping unit or dwelling unit.
- 4. Doors that open directly from a space less than 3,000 square feet (298 m²) in area.
- 5. Revolving doors.
- 6. Doors used primarily to facilitate vehicular movement or material handling and adjacent personnel doors.
- 7. Doors that have an air curtain with a velocity of not less than 6.56 feet per second (2 m/s) at the floor that have been tested in accordance with ANSI/AMCA 220 and installed in accordance with the manufacturer's instructions. Manual or automatic controls shall be provided that will operate the air curtain with the opening and closing of the door. Air curtains and their controls shall comply with Section C408.2.3.

90.1 - VESTIBULES EXCEPTIONS

- Non-entrance doors or doors opening from dwelling unit
- Building entrances with revolving doors
- All building entrances in climate zones 1 and 2 OR in *buildings* in climate zone 3 < 4 stories and < 10,000 ft² in gross conditioned floor area **OR** in buildings < 1000 ft² in gross conditioned floor area in climate zones 0 and 4-8
- All doors that open from spaces < 3000 ft² and separate from building entrance
- Semiheated spaces
- Enclosed elevator lobbies for *building entrances* directly from parking garages

Southface

90.1 VESTIBULES FOR LARGE SPACES

SECTION 6 – 6.4.3.9 HEATING AND COOLING IN VESTIBULES

Include automatic controls to

shut off heating system when

- OA temps are > 45°F
- Also controlled by a thermostat in the vestibule with setpoint limited to maximum of $60^\circ\mathrm{F}$

Note: a single heating thermostat in the vestibule limited to $45\,^{\rm o}{\rm F}$ would meet the requirements

Shut off vestibule cooling system when

- Controlled by a thermostat in the vestibule with setpoint limited to minimum of $_{\rm 85^\circ F}$

Exceptions, vestibules:

- heated or cooled by site-recovered energy
- tempered with transfer air that would otherwise be exhausted

🕸 Southface

CONDITIONED VESTIBULES?

FENESTRATION

🕸 Southface

FENESTRATION PRODUCT RATING

How Do You Meet the Requirement?

- Fenestration product rating in accordance to NFRC 100 (Windows, Doors, Skylights)
- Labeled and certified by the manufacturer
- Non-NFRC 100 rated fenestration
 - Default Glazed Fenestration U-factor Table C303.1.3(1)

🗱 Southface

NATIONAL FENESTRATION RATING COUNCIL LABEL CERTIFICATE

PRODUCT LISTING

FOR CODE COMPLIANCE

LABEL CERTIFICATE ID: XYZ-001 Insule ce Date: month/com

NFRC CERTIFIED PRODUCT RATING INFORMATION.* 614

PRODUCT LISTING:

			1			10010-0	al MPRIC Mester Nice	- Kaing
096.6	Total Area	- Nano	Franking Ref.	Damy he	Specie Ball	. W*	8400*	477
						27.	180	*
P-PL-018		PL-0081/PL-2018	FARID N	10411307	10.46.01	4.81	8.00	6.66
0.01.008	181.67	PL 3400 - PL 3401	FALMANT.	-BATTINE*	104.488.000	4.44	4.67	6.05
P-PL-012	10122	9,4781/9,4738	FARMER	GA-10-08E	104.7489 (011	8.85	8.81	1.01
1.1.102	44.00	PL 1100-10, 1103	FARITIES	SATT401	24.485.007	8.40	4.81	8.80
8-81-002	1010.000	PL 4802179, 4915	10.0.0010	64.15.88	10.000.000	8.45	8.15	8.19

FRAME, GLAZING and SPACER ASSEMBLIES

PRAMATIC MEP	BUPPLIK D	DESCRIPTION
AN PACENE		Brigh Constant Namely Botan Autouri
AN PUMOR		Property (Average Thermally Bollies Austrian
84-25,070		Vertice Blate FVC rectinged with Steel
44-91/162		Ventoral Sinaer Theoremaily Brathan Househours
14.01.0015		Final Transats Broken Auroputs

the second second	50000.000	DESCRIPTION
Gal.75.001		17 Double Dealed, THE HE Law-A. VM Clean, Auger (2016), 112' gap
6a-71-001		17 Train Glassel, MPClass: Canter Res. MP101, Augur (RP52, 3rd' pro-
Ga.71.000		If Smaller Steered, Yes' Browne, 197 SC Lawse, Report (87%), 457 ppp
PACER LISTIN	0	
PACER LISTIN		
PACER USTIN	0. 6/4.00.0	descarios
PACER LISTIN		

2004 http://www.internation.internation
 Ad -tg/bite reserved.

ENERGY PERFORMANCE OF GLAZING

Fenestration Terminology

U-Factor

Coefficient (SHGC)

Trasmittance (VLT)

🗱 Southface

ASHRAE FENESTRATION REQUIREMENTS FOR CZ4

	Nonresider	tial		Residentia	1		Semiheated			
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Min. <i>VTISHGC</i>	Assembly Max. U	Assembly Max. SHGC	Assembly Min. <i>VTISHGC</i>	Assembly Max. U	Assembly Max. SHGC	Assembly Min. VT/SHGC	
Vertical Fenestration	on, 0% to 40% o	t Wall								
Fixed	0.36	0.36	1.10	0.36	0.36	1.10 (for all types)	0.50	NR (for all types)	NR (for all types)	
Operable	0.45	0.33	(for all types)	0.45	0.33		0.65			
Entrance door	0.63	0.33		0.63	0.33		0.77			
Skylight, 0% to 3%	of Roof									
All types	0.50	0.40	NR	0.50	0.40	NR	0.75	NR	NR	

IECC FENESTRATION REQUIREMENTS

TABLE C402.4 BUILDING ENVELOPE FENESTRATION MAXIMUM UFACTOR AND SHGC REQUIREMENTS

CUMATE ZONE	0	AND 1		÷		4	4 EXCE	PTMARINE	5 AND	MARINE 4		4		2		
							Vertical fe	nestration								
							(pi-m	leter					-			
Paul Senestration		0.50	- 2	0.45		0.42	0.00		0.06 0.04		0.34	0.29		0.26		
Operable Reventration		0.62	1	0.60		0.54	0.45		0.45		0.42		0.36		0.32	
Entrance doors	5	0.02		0.77	1	0.65	0.63		0.63 0.63		0.63		0.63			
							38	90								
	Fixed	Operate	Foted	Operable	Feed	Operative.	Fixed	Operable	Fixed	Operatole	Fixed.	Operative	Fixed	Operative	Food	Operative
PF < 0.2	0.23	0.21	0.25	0.23	0.25	0.23	9.36	0.33	0.38	0.33	0.38	0.34	0.40	0.36	0.40	0.36
035PF+05	0.28	0.25	0.30	0.28	0.30	0.26	0.43	0a.0	0.46	0.40	0.46	0.41	0.48	0.43	0.40	0.43
PF200	0.37	0.34	04.0	0.37	0.40	0.97	0.58	0.53	0.61	0.53	0.61	0.54	0.64	0.55	0.64	0.58
					_		\$kyl	ights			_					
U-factor		0.70	1.1	0.60	1	0.55	0.60			0.50		0.50		0.44	13	0,41
SHOC		0.30		0.30		0.50	0.40		1	0.40		0.40		NR.		NR

toll + to Requirement PF + Projection Factor

FENESTRATION PRODUCT RATING

 Unlabeled fenestration is required to use the default Ufactor and SHGC values.

		Unlabeled Vertical Penestrelion							
		Clear Gia		Tinted Glass					
Frame Type	Glazing Type	U-Factor	SHOC	vr	U-Factor	SHOC	VT		
All frame types	Single glazing	1.25	0.82	0.76	1.25	0.70	0.58		
	Glass block	0.60	0.56	0.56	NA	NA.	NA		
Wood, vinyl, or	Double glazing	0.60	0.59	0.64	0.60	0.42	0.36		
lberglass frames	Triple glazing	0.45	0.52	0.57	0.45	0.34	0.21		
Metal and other	Double glazing	0.90	0.68	0.66	0.90	0.50	0.40		
hame types	Triple glazing	0.70	0.60	0.59	0.70	0.42	0.22		

 Those values are very poor and *will not comply* with the prescriptive compliance path.

🕸 Southface

MAXIMUM AREA

Fenestration: All areas (including frames) that let in light, including windows, plastic panels, clerestories, skylights, glass doors that are more than half glass, and glass block walls

The vertical fenestration area shall not be greater than **30 percent** of the gross above-grade wall area.

The skylight area shall not be greater than 3 percent of the gross roof area.

• Can increase skylight area to **5 percent** with the use of daylight responsive lighting controls

INCREASED FENESTRATION AREA

In Climate Zones 1 through 6, 1. 1-2 story buildings - At least 50 not more than **40 percent** of percent of the net floor area is the gross above-grade wall within a daylight zone. area shall be permitted to be 2. 3 stories or more - At least 25 vertical fenestration, provided percent of the net floor area is **all** of the following within a daylight zone. requirements are met: Daylight responsive controls complying with Section C405.2.3.1 are installed in daylight zones. 4. Visible transmittance (VT) of vertical fenestration is not less than 1.1 times solar heat gain coefficient (SHGC). 🕸 Southface

MAXIMUM AREA

Southface

Fenestration: Skylights, roof windows, vertical windows (fixed or moveable), *opaque doors*, glazed doors, glazed block, and combination opaque/glazed doors

- The vertical fenestration area shall not be greater than 40 percent of the gross above-grade wall area.
- The skylight area shall not be greater than 3 percent of the gross roof area.
 - Can increase skylight area to **6 percent** with the use of daylight responsive lighting controls

PERCENT GLAZING AREA EXAMPLE

Glazing Example

% Glazing = Fenestration Area / Gross Wall Area What is the % Glazing for a 100'x150' building with 20' high walls and 3,000 sq ft of windows and glass doors?

🗱 Southface

MAXIMUM SKYLIGHT AREA

IECC

Can increase skylight area from 3 percent to **5 percent** with the use of daylight responsive lighting controls

ASHRAE

Can increase skylight area from 3 percent to **6 percent** with the use of daylight responsive lighting controls

90.1 DAYLIGHTING DETAILS

nrea ets all criteria ng): se, corridor, warehouse, gym, ngine room, manufacturing, retail, g, or workshop
 Encomptions to Section 5.5.4.2.3 Enclosed spaces in Climate Zones 6 through 8 Enclosed spaces where it is documented that existing structures or natural objects block derect-brown smalight on at least half of the roof oces the enclosed space for more than 1500 deptime bours per year between 8 a m. and 4 p m. Enclosed spaces where the deplight area under roof monsters is greater than 50% of the enclosed space flow area. Enclosed spaces where the deplight area under roof monsters is greater than 50% of the enclosed space flow area. Enclosed spaces where the documented that 90% of the sliplight area is dualed on Jone 21 in the Northern Hemisphere) at noon by permanent architectural features of the building. Enclosed spaces where the total area mass the primary sidelighted area and secondary midelighted area and secondary modelighted area is descented in Section 1.200 ff² and where the lighting is controlled according to sidelighted area is descented in Section 1.200 ff² and where the lighting in controlled according to sidelighted area in the scattering the scattering the scattering the scattering the scattering to side-lighting requirements described in Section 2.4.1.1(e).
r

ASHRAE

A retail "big box" store in KC has a total floor area of 50,000 ft² and a ceiling height of 25 ft.

What is the minimum area (ft²) required for the "daylight zone" in this building (from skylights or other)?

What is maximum % of skylight area allowed?

PROJECTION FACTOR (PF)

The ratio of overhang projection divided by height from windowsill to bottom of overhang (must be permanent)

PF = 8/11 = 0.73

For S, E or W glazing SHGC multiplier (from next slide) = <u>0.51</u>

If glass SHGC = 0.48, it effectively becomes 0.24 due to overhang

🔅 Southface

SHGC MULTIPLIERS

	Projection Factor	SHGC Multiplier (South, East, and West Orientations)
	0 t0 0.10	1.00
	>0.10 to 0.20	0.91
	>0.20 to 0.30	0.82
	>0.30 to 0.40	0.74
	>0.40 to 0.50	0.67
	>0.50 to 0.60	0.61
	>0.60 to 0.70	0.56
≯	>0.70 to 0.80	0.51
	>0.80 to 0.90	0.47
	>0.90 to 1.00	0.44

Vertical fenestration that is north oriented shall be permitted to have an SHGC equal to or less than the area-weighted average SHGC of the south-east-, and west-oriented vertical fenestration before any reductions made for permanent projections in Exceptions 1 and 2 of Section 5.5.4.4.1.

В

PF = A/B

No credit for overhangs on North glazing

OVERHANGS

🗱 Southface

Must be permanent!

FENESTRATION ORIENTATION

Area of vertical fenestration on east and west facades may not exceed 25% of total area of vertical glazing with some exceptions for permanent shading

SECTION 5.5.4.6: VT/SHGC RATIO

Where automatic daylighting controls are required, the Visible Transmittance / SHGC ratio shall be \geq 1.1 Exceptions to Section 5.5.4.6 1. A light-to-solar-gain ratio (LSG) of not less than 1.25 is allowed to be used as an alternative to VT/SHGC. When using this option, the center-of-glass VT and the center-of-glass SHGC shall be determined in accordance with NFRC 300 and NFRC 301, determined by an independent laboratory or included in a database published by a government agency. and certified by the manufacturar. 2. Fenestration not covered in the scope of the NFRC 200. 3. Enclosed spaces where the daylight area under roof monitors is greater than 50% of the enclosed space floor area. 4. Enclosed spaces with skylights that comply with Section 5.5.4.2.3. Enclosed spaces where the sidelighting effective aperture is greater than or equal to 0.15. 6. For dynamic glazing, the VT/SHGC ratio and the LSG shall be determined using the maximum VT and maximum SHGC. Dynamic glazing shall be considered separately from other fanastration, and area-weighted averaging with other fanastration that is not dynamic glazing shall not be permitted. 🕸 Southface

ENERGY CODE TRAINING BUILDING ENVELOPE TRADE OFFS

https://vimeo.com/169382048/c973625071

Commercial Envelope Part 2

EAZEE BUILDING COMCHECK ENVELOPE HW PROBLEM

1210 115.00

Small 10' Strip Retail Building

East Wall: R-19 2x6, 16" o.c. all metal curtain-wall glazing is on the Front (East) façade and shaded by a 6' overhang (500 s.f.)

- East Glazing 410 s.f. U-0.36, SHGC-0.44, VT-0.50
- East Glass Entry 40 s.f. U-0.31, SHGC-0.38, VT-0.50

South Wall: 8" CMU's - adjacent "interior" (700 s.f.)

North Wall: 8" CMU's with R-10 c.i. (700 s.f.)

West Wall: 8" CMU's with R-10 c.i. (500 s.f.)

• Rear Opaque Doors 80 s.f. U-0.32

Enter the building dimensions into COMCheck and locate it in your city in MO. Slab on grade, R-10, Ceiling R-30 continuous above roof decking. Select/adjust insulation values that will make it pass 90.1-2019

🗱 Southface

Adjust wall R-values, etc. until design passes

CONCLUSION

Go to www.energycodes.gov and pull up COMCheck web

- establish a user's account & feel free to play with it

Southface